
BLAST Scoring Parameters

E. Michael Gertz

March 16, 2005 ∗

Contents

1 Introduction 3

2 Karlin block objects 5
2.1 Blast KarlinBlkNew . 5
2.2 Blast KarlinBlkFree . 5

3 Calculating λ, K and H for ungapped alignment 6
3.1 Blast KarlinBlkUngappedCalc 6
3.2 Blast KarlinLambdaNR . 7
3.3 BlastKarlinLtoH . 7
3.4 BlastKarlinLHtoK . 8

4 Looking up λ, K and H for gapped alignment 9
4.1 Blast KarlinBlkGappedCalc . 9
4.2 Blast KarlinBlkGappedFill . 9

5 Routines for computing the effective size of the search space 11
5.1 BLAST CalcEffLengths . 11
5.2 BLAST ComputeLengthAdjustment 12

6 Routines that compute statistics for a single distinct alignment 13
6.1 BLAST KarlinStoE simple . 13
6.2 BlastKarlinEtoS simple . 13

7 Routines for evaluating multiple local alignments 14
7.1 BLAST UnevenGapSumE . 15
7.2 BLAST SmallGapSumE . 17
7.3 BLAST LargeGapSumE . 17
7.4 BLAST GapDecayDivisor . 18

∗Revised Apr 4, 2006

1

8 Karlin block objects in BlastScoreBlk objects 19
8.1 BlastSetup ScoreBlkInit . 20
8.2 Blast ScoreBlkKbpUngappedCalc 21
8.3 Blast ScoreBlkKbpGappedCalc 21
8.4 s PHIScoreBlkFill . 22
8.5 Blast ScoreBlkKbpIdealCalc . 22

9 Composition-based statistics 23
9.1 Kappa RedoAlignmentCore . 23
9.2 Kappa RescaleSearch . 25
9.3 WindowsFromHSPs . 25
9.4 Kappa AdjustSearch . 26

10 PSI-BLAST and RPS-BLAST 27

11 Routines operating on an array of HSPs 27
11.1 Blast HSPListGetEvalues . 28
11.2 Blast HSPListGetBitScores . 28
11.3 HSP Linking For Sum Statistics 29

11.3.1 BLAST LinkHsps . 29
11.3.2 s BlastUnevenGapLinkHSPs and s SumHSPEvalue 30
11.3.3 s BlastEvenGapLinkHSPs 33

12 Routines that initialize parameters used to compute alignments 36
12.1 s BlastFindValidKarlinBlk . 37
12.2 BLAST Cutoffs . 37
12.3 Cutoff values used to compute and save ungapped alignments . . 38

12.3.1 BlastInitialWordParametersNew 39
12.3.2 BlastInitialWordParametersUpdate 40

12.4 BlastExtensionParametersNew 41
12.5 Routines that set fields in BlastHitSavingParameters object . . . 43

12.5.1 BlastHitSavingParametersNew 43
12.5.2 BlastHitSavingParametersUpdate 43

12.6 CalculateLinkHSPCutoffs . 44

A Blast KarlinBlkUngappedCalc details 45
A.1 Developer comments . 45
A.2 Error conditions . 46
A.3 Numerical comments . 47

A.3.1 Evaluation of series via Horner’s rule 47
A.3.2 Newton’s method for computing λ∗. 48

B The calculation of length adjustments 50
B.1 A fixed-point iteration . 50
B.2 A safeguarded fixed-point iteration 51
B.3 Convergence properties . 52

2

1 Introduction

BLAST is a tool that is used to align biological sequences. In its most basic form,
BLAST finds local alignments of a query amino acid or nucleotide sequence to
another amino acid or nucleotide sequence, known as a subject sequence. Most
commonly, a single BLAST run finds local alignments of a query sequence to a
database of subject sequences.

An alignment may or may not contain gaps, depending on the type of BLAST
search that is performed. A search for an alignment that may contain gaps is
known as a gapped search. An optimal alignment that results from a gapped
search may happen to not involve any gaps. Nonetheless, the result of a gapped
search is known as a gapped alignment. Similarly, an ungapped search finds align-
ments that must not contain gaps, and such alignments are known as ungapped
alignments. The terms gapped and ungapped are used frequently in describing
the operation of BLAST, and the meaning should be clear from context.

Every alignment computed by BLAST has a similarity score associated with
it. A BLAST search uses a matrix that associates every pair of matched or mis-
matched characters in an alignment with a score. For an ungapped alignment,
the scoring matrix suffices to determine a score. For alignments that contain
gaps, three additional parameters are required:

gap open the penalty for opening a gap;

gap extend the penalty for extending an open gap by a single amino acid or
nucleotide; and

decline align the penalty for declining to align two characters in a gap region.

The decline align parameter is currently always set to an effectively infi-
nite value, disabling its use. The purpose of this parameter is discussed in
Altschul [3].

Karlin-Altschul parameters are used by BLAST to evaluate the significance
of high-scoring alignments. Some BLAST programs evaluate the significance of
each distinct alignment separately, but others evaluate the significance of several
distinct alignments taken together as a linked set. The expected value (E-value)
of a single distinct alignment may be calculated by the formula

E = Kmne−λS , (1)

where K and λ are Karlin-Altschul parameters and m and n are the effective
lengths (defined later) of the query sequence and database, respectively. Karlin
and Altschul [10] and Dembo, Karlin and Zeitouni [8] discuss the motivation for
formula (1). Separate sets of Karlin-Altschul parameters are used to evaluate
the significance of gapped and ungapped alignments. We defer discussion of
evaluating the significance of multiple distinct alignments to section 7.

An alignment is less likely to start near the right edge of a sequence than
it is to start away from that edge. To compensate for this effect, equation (1)
uses the effective lengths of the query and database sequences, rather than their

3

actual lengths. Effective lengths, and how they are calculated, are discussed in
section 5 of this document, in Altschul and Gish [5] and in Altschul et al. [4].

The values K and λ are also used to compute normalized scores, which
are used to compare the scores of alignments computed using different scoring
systems. One common form of normalized score is the bit score, calculated by
the formula

SB = (λS − lnK)/ ln 2. (2)

Less common, but also used, is the nat score, computed by the formula

SN = λS − lnK.

For ungapped alignments, Karlin-Altschul parameters may be explicitly cal-
culated. For gapped alignments, they must be obtained by simulation using
random sequences of “standard” composition and a specific choice of matrix
and of gap open, gap extend and decline align parameters. For this reason,
BLAST calculates ungapped Karlin-Altschul parameters based on the compo-
sition of two sequences, but obtains gapped Karlin-Altschul parameters from
a set of precomputed tables. Routines that adjust scoring systems for gapped
alignments to account for the composition of the query and subject sequences
have been developed (see section 9.)

An additional statistical parameter that is computed and saved is H, which
is known as the entropy of the scoring system. For ungapped alignments,

H = λ
u∑

i=`

iP1(i)eiλ,

where P1(i) is the probability that score i occurs when one character of the
subject sequence is aligned with one character of the query, and

` = min{i | P1(i) > 0} and u = max{i | P1(i) > 0}.

The value H has theoretical implications but is rarely used in the BLAST code.
The value is used by the BlastKarlinLHtoK routine to compute K and by the
BLAST CalcEffLengths routine to compute the effective lengths of the query
and database sequences.

Discussion of the BLAST algorithm is complicated by the fact that there
are several types of BLAST search. For instance, blastx takes a nucleotide
query, translates it in six reading frames to an amino acid sequence and aligns
each frame to a protein database. PSI-BLAST aligns an amino-acid query to a
protein database using a position-specific score matrix. There are many more
types of search, but despite their differences they are all conducted using a
similar set of concepts. So while it is important to understand the differences
between the various BLAST programs, we focus on unifying concepts whenever
possible.

The purpose of this document is to put in one place, for the first time, all
aspects of how Karlin-Altschul statistical parameters are used in the BLAST

4

code. Development of this document exposed several, now resolved, inconsis-
tencies within the code, and between the code and theory. At this time, there
is production BLAST code in the NCBI C toolkit and development code in the
NCBI C++ toolkit. This document refers to the version of the C++ toolkit
BLAST code current as of January 2005, unless otherwise noted.

2 Karlin block objects

The Karlin-Altschul parameters λ, K and H are stored in objects of datatype
Blast KarlinBlk. The following definition of the Blast KarlinBlk datatype
was obtained from the file blast stat.h.

typedef struct Blast_KarlinBlk {
double Lambda;
double K;
double logK;
double H;
double paramC;

} Blast_KarlinBlk;

We refer to objects of type Blast KarlinBlk as Karlin blocks.
The Lambda, H and K fields correspond to the statistical parameters discussed

in the previous section. The logK field holds the natural logarithm of K. The
paramC field is used only in PHI-BLAST. (See Zhang et al. [13].) The field is
set in the s PHIScoreBlkFill or Blast ScoreBlkKbpGappedCalc routine and
used in the Blast HSPPHIGetEvalue routine. We do not discuss PHI-BLAST
or paramC further in this document.

2.1 Blast KarlinBlkNew

Blast KarlinBlkNew creates and returns a new Karlin block. It is declared in
blast stat.h with the following prototype.

Blast_KarlinBlk* Blast_KarlinBlkNew (void)

Memory for the block is allocated using calloc. Thus the various fields of the
Karlin block are initialized with the bit pattern zero.

2.2 Blast KarlinBlkFree

Karlin blocks are deleted by the routine Blast KarlinBlkFree, which is defined
in blast stat.c with the following prototype.

Blast_KarlinBlk* Blast_KarlinBlkFree(Blast_KarlinBlk* kbp)

The return value of this routine is always NULL.

5

Blast_KarlinBlkCalc

Blast_KarlinLambdaNR BlastKarlinLtoH BlastKarlinLHtoK

Figure 1: Blast KarlinBlkUngappedCalc invokes several computational sub-
routines

3 Calculating λ, K and H for ungapped align-
ment

The routines in this section are used to find values for the Karlin-Altschul pa-
rameters λ, K and H for ungapped alignments. For a theoretical discussion of
the computation of these parameters, see Karlin and Altschul [10].

The parameters are calculated from a set of score frequencies, which are rep-
resented by an object of type Blast ScoreFreq. The score frequencies are based
on the scoring matrix used and on the distribution of characters in the subject
and query sequences. In some circumstances, the query or subject sequence is
assumed to have a standard distribution of amino acids or nucleotides. In other
circumstances, the actual composition of the query or subject sequence is used.

3.1 Blast KarlinBlkUngappedCalc

The static routine Blast KarlinBlkUngappedCalc is defined in blast stat.c
with the following prototype.

Int2
Blast_KarlinBlkUngappedCalc(Blast_KarlinBlk* kbp,

Blast_ScoreFreq* sfp)

The definition of the routine is preceded by a lengthy developer comment that
may be found in Appendix A.1.

Blast KarlinBlkUngappedCalc invokes several numerical routines (see Fig-
ure 1) to initialize the Karlin block pointed to by the function argument kbp. It
calculates appropriate values of λ, H and K for an ungapped alignment based
on the score frequencies provided by the BLAST ScoreFreq object sfp. There
are conditions under which λ, H and K are set to −1 to indicate an error.
We discuss the usual case in this subsection and defer a discussion of the error
conditions to section A.2.

To simplify discussion, we introduce some notation used throughout this
section. In BLAST, scores are integer-valued. Let

Pj(i) = the probability of a local alignment of length j with score i. (3)

6

There are only finitely many i for which P1(i) > 0. Let

` = min{i | P1(i) > 0} and u = max{i | P1(i) > 0}. (4)

For theoretically valid scoring systems, ` must be negative, and u must be
positive; see Karlin and Altschul [10]. The function P1(i) may be represented
by an array p with initial index zero and length u− ` + 1 such that

P1(i) = p[i− `]. (5)

The Blast ScoreFreq object sfp has data members that represent the val-
ues `, u and p. The fields are named obs min, obs max and sprob respectively.
However, the pointer sprob has been manipulated so that sprob[`] = p[0].

3.2 Blast KarlinLambdaNR

The value of λ is computed by the Blast KarlinLambdaNR routine, which is
declared in blast stat.h with the following prototype.

double
Blast_KarlinLambdaNR(Blast_ScoreFreq* sfp,

double initialLambdaGuess)

This routine uses a Newton-Raphson method to compute the unique positive
solution to the equation

φ(λ) = −1 +
u∑

i=`

P1(i)eiλ = 0. (6)

Blast KarlinLambdaNR does not apply Newton’s method to φ(λ) directly, but
rather invokes the NlmKarlinLambdaNR routine, which uses the algorithm given
in section A.3.2 to solve equation (6).

3.3 BlastKarlinLtoH

The BlastKarlinLtoH routine is defined in blast stat.c with prototype

static double
BlastKarlinLtoH(Blast_ScoreFreq* sfp, double lambda)

It computes H using the formula

H = λ
u∑

i=`

iP1(i)eiλ. (7)

7

3.4 BlastKarlinLHtoK

The BlastKarlinLHtoK routine is defined in blast stat.c as

static double
BlastKarlinLHtoK(Blast_ScoreFreq* sfp,

double lambda, double H)

The computation of K, performed by BlastKarlinLHtoK, is more complex than
the calculation of λ or H. Assume ` 6= −1 and u 6= 1; the cases in which ` = −1
or u = 1 are treated separately and are discussed below. The BlastKarlinLHtoK
computes a value σ̄ that approximates the infinite sum

σ =
∞∑

j=1

1
j

[−1∑
i=−∞

Pj(i)eiλ +
∞∑

i=0

Pj(i)

]
. (8)

The BlastKarlinLHtoK routine computes the values of Pj(i) using the formula

Pj(i) =
∞∑

k=−∞

P1(k)Pj−1(i− k), (9)

which assumes that the probability of appending an item to the end of a sequence
is independent of what has gone before. There are only finitely many i for which
P1(i) > 0, and thus an inductive argument using equation (9) shows that for
any j, there are only finitely many i for which Pj(i) > 0. Therefore for any
fixed value of j,

−1∑
i=−∞

Pj(i)eiλ +
∞∑

i=0

Pj(i)

may be computed in a finite number of operations. On the other hand, the
computation must approximate the sum over all j = 1, . . . ,∞. The sum over
all j is truncated when terms in the sum become sufficiently small.

Once σ̄ has been computed, K is obtained from the formula

K =
δλ exp(−2σ̄)
H(1− e−δλ)

, (10)

where δ is the greatest common divisor of all scores that have nonzero proba-
bility. Usually δ = 1.

If u = δ or ` = −δ, then the computation of σ̄ is not performed. If both
u = δ and ` = −δ, then

K = [P1(δ)− P1(−δ)]2/P1(−δ).

Otherwise, if u = δ but ` 6= −δ, then K is calculated by the formula

K =
H

δλ
(1− e−δλ). (11)

8

In the remaining case, which is that ` = −δ but u 6= δ, the value of K is
computed using the formula

K =
λ(1− e−δλ)

δH

(
u∑

i=`

iP1(i)

)2

. (12)

4 Looking up λ, K and H for gapped alignment

The statistical theory for gapped alignments is not as complete as the theory for
ungapped alignments. BLAST cannot calculate the Karlin-Altschul parameters,
as it does for ungapped alignments, but rather looks them up in a table of
precomputed values that have been obtained by simulation. (See Altschul et
al. [4].)

4.1 Blast KarlinBlkGappedCalc

The Blast KarlinBlkGappedCalc routine is declared in the file blast stat.h
with the following prototype.

Int2
Blast_KarlinBlkGappedCalc(

Blast_KarlinBlk* kbp, Int4 gap_open,
Int4 gap_extend, Int4 decline_align,
const char* matrix_name, Blast_Message** error_return)

The routine invokes the Blast KarlinBlkGappedFill routine to look up Karlin-
Altschul parameters. It reports diagnostic information to the user whenever the
Blast KarlinkGapBlkFill routine fails.

4.2 Blast KarlinBlkGappedFill

The Blast KarlinBlkGappedFill routine is declared in blast stat.h to have
the following prototype.

Int2
Blast_KarlinBlkGappedFill(Blast_KarlinBlk* kbp,

Int4 gap_open,
Int4 gap_extend,
Int4 decline_align,
const char* matrix_name)

The purpose of this routine is to obtain a set of Karlin-Altschul parameters
appropriate for a specific choice of matrix and specific values of gap open,
gap extend and decline align.

Several named collections of parameter values, each corresponding to a par-
ticular scoring matrix, are defined in the file blast stat.c as static global
variables. These global variables are values of the Karlin-Altschul parameters

9

for different settings of gap open, gap extend and decline align. The mean-
ing of parameters gap open, gap extend and decline align is discussed in
section 1.

The Blast KarlinBlkGappedFill routine uses the value of its function ar-
gument matrix name to access a collection of parameter values corresponding to
a named score matrix. Within this collection, the data representing the param-
eter values is stored as a two-dimensional array of double precision values. Each
row of the array stores the parameter values appropriate for a particular value
of the triple (gap open, gap extend, decline align). The following developer
comment, found in blast stat.c, describes the data format in more detail.

How the statistical parameters for the matrices are stored:

The parameters are stored in a two-dimensional array double (i.e.,
doubles), which has as its first dimensions the number of different
gap existence and extension combinations and as it’s [sic] second
dimension 8. The eight different columns specify:

(1) gap existence penalty (INT2 MAX denotes infinite); (2) gap exten-
sion penalty (INT2 MAX denotes infinite); (3) decline to align penalty
(INT2 MAX denotes infinite); (4) λ; (5) K; (6) H; (7) α; and (8) β.

Note that in the developer comment the first column has index one, whereas in
the C programming language the first column has index zero. The α and β pa-
rameters mentioned in the comment are related to effective length calculations;
these parameters are discussed in Altschul et al. [4] and below in section 5.2.

Blast KarlinBlkGappedFill searches the named collection for an array of
scoring parameters that matches the function arguments gap open, gap extend
and decline align. An array is considered to be a match if all the following
conditions hold:

• that gap open matches the corresponding element in the array to the
nearest integer;

• that gap extend matches the corresponding element in the array to the
nearest integer; and

• that either decline align matches the corresponding element in the array
to the nearest integer, or the element in the array is INT2 MAX, which is
used to represent infinity.

If a match is found, the routine sets λ, H and K using the values stored in the
array.

The error conditions that might occur are described in the following devel-
oper comment.

return values:

-1 if matrix name is NULL;

1 if matrix not found

10

2 if matrix found, but open, extend etc. values not supported.

If the routine is successful, it returns zero.

5 Routines for computing the effective size of
the search space

An optimal alignment is less likely to start near the right edge of a sequence
than it is to start away from that edge. To compensate for this effect, BLAST
uses “effective lengths” of the database and query sequence when calculating
statistics, rather than actual lengths. (See Altschul and Gish [5].)

Let m be the effective length of the query and ma be its actual length.
Similarly, let n be the effective length of the database and na be its actual
length. Furthermore, let N be the number of sequences in the database. Then
the effective lengths of the query and database are related to the actual lengths
through the formulas

m = ma − ¯̀

n = na −N ¯̀,

where ¯̀ is a nonnegative integer known as the length adjustment. The effective
size of the search space is the product of m and n, in other words

effective search space =
(
ma − ¯̀) (na −N ¯̀) . (14)

5.1 BLAST CalcEffLengths

The BLAST CalcEffLengths routine is declared in the file blast setup.h with
the following prototype.

Int2 BLAST_CalcEffLengths (EBlastProgramType program_number,
const BlastScoringOptions* scoring_options,
const BlastEffectiveLengthsParameters* eff_len_params,
const BlastScoreBlk* sbp, BlastQueryInfo* query_info)

Each BLAST search has one or more query contexts. Depending on the
type of search, a context may represent a distinct translation frame of the nu-
cleotide query, a distinct strand of a double-stranded molecule or simply a dis-
tinct query sequence. In general each query context has a distinct length, and
so a separate value of the length adjustment and an effective length must be
calculated for each context. BLAST CalcEffLengths computes these values and
stores them in the appropriate locations in the arrays eff searchsp array and
length adjustments. These arrays are fields of the BlastQueryInfo object to
which the function argument query info points.

For each context, the BLAST CalcEffLengths routine invokes the subrou-
tine BLAST ComputeLengthAdjustment to compute an appropriate value for the

11

length adjustment. If eff len params->options->searchsp eff is zero, the
size of the effective search space is computed from the length adjustment using
equation (14). On the other hand, if the searchsp eff field is nonzero, then its
value is used for the search space size in every context and the length adjustment
and search space size may not satisfy equation (14).

5.2 BLAST ComputeLengthAdjustment

The BLAST ComputeLengthAdjustment routine computes the adjustment to the
lengths of the query and database sequences that is used to compensate for edge
effects when computing E-values. The routine is declared in blast stat.h with
the following prototype.

Int4
BLAST_ComputeLengthAdjustment(

double K, double logK,
double alpha_d_lambda, double beta,
Int4 query_length, Int8 db_length, Int4 db_num_seqs,
Int4 * length_adjustment)

The parameters to the routine have the following meanings:

K the statistical parameter K;

logK the natural logarithm of K;

alpha d lambda the ratio of the statistical parameters α and λ (for ungapped
alignments the theoretically correct value of alpha d lambda is 1/H);

beta the statistical parameter β (for ungapped alignments, β = 0);

query length the length of the query sequence, which we denote ma;

db length the length of the database, which we denote na;

db num seqs the number of sequences in the database, which we denote N ; and

length adjustment the computed value of the length adjustment, which we
denote ¯̀.

The computed length adjustment ¯̀ is an integer-valued approximation to
the fixed point of the function

f(`) =
α

λ
ln {K(ma − `)(na −N`)}+ β,

The computed value ¯̀ is always an integer smaller than the fixed point of
f(`). Usually, it will be the largest such integer. However, ¯̀ is also restricted to
satisfy the inequality

K
(
ma − ¯̀) (na −N ¯̀) ≥ max(ma, na).

12

or is zero in the extraordinary case that no positive ¯̀ satisfies the inequality.
Moreover, an iterative method described in Appendix B is used to compute ¯̀,
and under unusual circumstances the iterative method does not converge.

The routine returns zero if ¯̀ is known to be the largest integer less than the
fixed point of f(`). Otherwise, it returns one.

6 Routines that compute statistics for a single
distinct alignment

The following routines relate a “raw” score S to an E-value E using formula

E = Kmne−λS ,

where the integers m and n are the effective lengths of the query and database
sequences, respectively. This formula is introduced in section 1 as equation (1).
It is appropriate for evaluating the significance of a single distinct alignment
only.

6.1 BLAST KarlinStoE simple

The BLAST KarlinStoE simple routine calculates an E-value E from a score
S. The routine is defined in blast stat.c with the following prototype.

double
BLAST_KarlinStoE_simple(Int4 S, const Blast_KarlinBlk* kbp,

Int8 searchsp)

In the notation of equation (1), searchsp is the effective search space, mn.
If any of the values λ, K or H is negative, then the function returns −1.

Otherwise, it returns E, as computed by the formula

E = searchsp× exp (−λS + ln(K)) . (15)

The value of ln(K) is not computed by BLAST KarlinStoE simple. Instead,
the cached value kbp->logK is used.

6.2 BlastKarlinEtoS simple

BlastKarlinEtoS simple computes a score S from an E-value E. This static
routine is declared in the file blast stat.c with the following prototype.

static Int4
BlastKarlinEtoS_simple(double E, const Blast_KarlinBlk* kbp,

double searchsp)

13

In the notation of equation (1), the value of searchsp is mn.
This routine may be used to compute the minimum score a distinct alignment

must attain to be assigned an E-value no larger than E. Thresholds used by
the blast algorithm are often expressed as E-values, which are later converted
to cutoff scores that are relative to a particular scoring system; see section 12
for a discussion of how this is done.

The routine uses the macro constants BLAST SCORE MIN, which is #defined
in the file blast stat.h to equal INT2 MIN, and BLASTKAR SMALL FLOAT, which
is #defined to be 10−297 in blast stat.c. If any of the values λ, K or H
is negative, then the routine returns the value BLAST SCORE MIN. Otherwise, it
returns S, computed as follows:

S =
⌈
ln
(
(K × searchsp)/Ê

)
/λ
⌉

, (16)

where Ê = max(E, BLASTKAR SMALL FLOAT).

7 Routines for evaluating multiple local align-
ments

For some types of search, BLAST joins multiple distinct alignments into linked
sets and evaluates the statistical significance of each set as a whole. As of
January 2005, this is done for ungapped alignments and for alignments in which
one or both of the sequences is translated. For ungapped alignments, linked
sets are calculated as an alternative to performing a gapped alignment. For
translated queries, linked sets are computed to relate significant alignments
that may not be in the same translation frame.

Three rules are needed to perform linking:

• a rule for producing permissible and promising linked sets from a collection
of distinct alignments;

• a rule for evaluating the significance of a proposed linked set; and

• a rule for adjusting E-values to compensate for the effect of choosing the
best among linked sets of differing sizes.

Because BLAST chooses the best among collections of linked sets with a differing
number of elements, multiple tests are performed. Thus, an E-value obtained
from equation (1) is not an appropriate measure of significance when linking is
performed, even if a linked set contains only one alignment.

Section 11.3 discusses rules for partitioning a collection of distinct alignments
into linked sets. This section discusses the BLAST SmallGapSumE routine, the
BLAST LargeGapSumE routine and the BLAST UnevenGapSumE routine, which are
used to evaluate the statistical significance of linked sets. (See Altschul [2]; and
Karlin and Altschul [11].)

14

Each of these routines is based on a different assumption about what re-
strictions are placed on the locations at which adjacent alignments may start.
Placing a restriction on the number of starting positions effectively limits the
maximum size of the gap between alignments. However, a zero-length gap or
some overlap between alignments is permitted, so the interval of permitted
starting points is always longer than the maximum gap size.

BLAST UnevenGapSumE computes E-values when a restriction on the number
of starting points is imposed for the query sequence, and a possibly different
restriction is imposed for the subject sequence. BLAST SmallGapSumE computes
E-values in the special case in which the restriction is the same in both the query
and the subject sequence. BLAST LargeGapSumE computes E-values based on
the assumption that no restriction has been imposed on the size of a gap between
adjacent alignments.

The alignments in a linked set may come from distinct query contexts (see
section 8 for a discussion of query contexts). Therefore, the computed E-value
is based on a sum of the scores of the HSPs, each score individually normalized
in units of nats. The sum score is

xsum =
N∑

i=1

(λiSi − lnKi), (17)

where Si is the score of an individual alignment in the collection, and λi and Ki

are the Karlin-Altschul statistical parameters appropriate for that alignment.
It is convenient to allow the calling routine to compute the normalized sum
score, and so the routines for computing E-values do not use Karlin-Altschul
parameters directly.

The BLAST GapDecayDivisor routine, discussed in this section, is the appro-
priate method for obtaining weights to compensate for the effect of performing
multiple tests when evaluating linked sets. See section 7.4 for further discussion.

7.1 BLAST UnevenGapSumE

The BLAST UnevenGapSumE routine calculates the E-value of a collection of dis-
tinct alignments. It is used to compute E-values when a restriction on the
number of starting points between adjacent alignments is imposed for the query
sequence, and a possibly different restriction is imposed for the subject sequence.

The function declaration, found in blast stat.h, is as follows.

double
BLAST_UnevenGapSumE(Int4 query_start_points,

Int4 subject_start_points,
Int2 num, double xsum,
Int4 query_length, Int4 subject_length,
Int8 searchsp_eff,
double weight_divisor)

The meaning of the various function arguments is as follows:

15

query start points the number of starting points permitted in the query se-
quence between adjacent alignments;

subject start points the number of starting points permitted in the subject
sequence between adjacent alignments;

num the number of distinct alignments in this collection;

xsum the sum of the scores of these alignments, each individually normalized
using appropriate values of λ and K (see equation (17));

query length the effective length of the query sequence;

subject length the effective length of the subject sequence;

searchsp eff effective size of the search space; and

weight divisor a divisor used to weight the E-value when multiple collections
of alignments are being considered by the calling routine.

We represent the integers num by r, query length by m, subject length
by nS , query start points by gP and subject start points by gN . Let w
represent the double-precision quantity weight divisor.

The BLAST UnevenGapSumE routine uses the following equations to compute
its return value, denoted here by ÊS .

S′ ← xsum− ln(mnS)− (r − 1)(ln gP + ln gN)− ln(r!) (18a)
PS ← BlastSumP(r, S′) (18b)
ES ← searchsp eff × BlastKarlinPtoE(PS)/(mnS) (18c)

ÊS ← ES/w (18d)

BlastSumP and BlastKarlinPtoE are routines defined in blast stat.c. Ac-
cording to developer comments in blast stat.c, for r 6= 1 the BlastSumP
routine approximates the value

rr−2

(r − 1)!(r − 2)!

∫ ∞

xsum

exp(−y)
∫ ∞

0

xr−2 exp(− exp(x− y/r)) dx dy. (19)

For the special case of r = 1, the BlastSumP routine returns

1− exp[−e−xsum]. (20)

The BlastKarlinPtoE function is defined as follows:

BlastKarlinPtoE(p) =

 INT4 MIN if p < 0 or p > 1;
INT4 MAX if p = 1; and
− ln(−p + 1) otherwise.

(21)

The BLAST UnevenGapSumE routine treats the case r = 1 specially. In this
case, the E-value is

ÊS = searchsp eff × exp(−xsum)/w. (22)

16

Ignoring numerical error, this value computed by this formula is the same as
the value computed by the general rule (18) when r = 1. The special rule
was introduced to eliminate the small differences due to numerical error that
used to occur when BLAST SmallGapSumE routine, the BLAST LargeGapSumE and
BLAST UnevenGapSumE were applied to the same singleton linked set.

7.2 BLAST SmallGapSumE

The BLAST SmallGapSumE routine calculates the E-value of a collection of dis-
tinct alignments. This routine is a special case of the BLAST UnevenGapSumE
routine in which the restriction on the number of starting locations permitted
between adjacent alignments is the same in both the query and the subject
sequence.

The following declaration is found in blast stat.h.

double
BLAST_SmallGapSumE(Int4 starting_points,

Int2 num, double xsum,
Int4 query_length, Int4 subject_length,
Int8 searchsp_eff,
double weight_divisor)

Each argument of BLAST SmallGapSumE corresponds exactly to a function ar-
gument of BLAST UnevenGapSumE, with one exception; the starting points
argument replaces the query start points and subject start points argu-
ments of BLAST UnevenGapSumE. The starting points argument represents
the number of starting points permitted between adjacent alignments in both
the query and subject sequence.

We denote the the value of the starting points argument by g, and re-
fer to the rest of the arguments of BLAST SmallGapSumE using the notation of
section 7.1. The BLAST SmallGapSumE routine uses the following equations to
compute its return value, denoted here by ÊS .

S′ ← xsum− ln(mnS)− (r − 1)(2 ln g)− ln(r!) (23a)
PS ← BlastSumP(r, S′) (23b)
ES ← searchsp eff × BlastKarlinPtoE(PS)/(mnS) (23c)

ÊS = ES/w, (23d)

where BlastSumP and BlastKarlinPtoE are functions defined in blast stat.c
that are described above by equations (19), (20) and (21).

BLAST SmallGapSumE uses the rule (22) in the special case that r = 1.

7.3 BLAST LargeGapSumE

The BLAST LargeGapSumE routine calculates the expected value of a collection
of distinct alignments when no restriction is put on the size of the gap between

17

adjacent alignments. The function declaration, found in blast stat.h, is as
follows.

double
BLAST_LargeGapSumE(Int2 num, double xsum,

Int4 query_length, Int4 subject_length,
Int8 searchsp_eff, double weight_divisor)

The names of the function arguments are the same as the names of the argu-
ments to the function BLAST UnevenGapSumE, and the arguments have the same
meaning. However, the query start points and subject start points argu-
ments are present in the function BLAST UnevenGapSumE but not in the function
BLAST LargeGapSumE.

We refer to the arguments of BLAST LargeGapSumE using the notation of
section 7.1. The BLAST LargeGapSumE routine uses the following equations to
compute its return value, denoted here by ÊS .

S′ ← xsum− r lnmnS − ln(r!) (24a)
PS ← BlastSumP(r, S′) (24b)
ES ← searchsp eff × BlastKarlinPtoE(PS)/(mnS) (24c)

ÊS ← ES/w, (24d)

where BlastSumP and BlastKarlinPtoE are routines, defined in blast stat.c,
that are described by equations (19), (20) and (21).

BLAST LargeGapSumE uses the rule (22) in the special case that r = 1.

7.4 BLAST GapDecayDivisor

An algorithm that searches for a statistically significant collection of multiple
distinct alignments usually chooses the most significant of several collections.
One must weight the E-value of each collection to compensate for the effect of
choosing the best among collections of different size. A technique for weighting
E-values to compensate for this effect is described in Altschul [2]; and Karlin
and Altschul [11]. The BLAST GapDecayDivisor routine computes the weights
used by this technique.

The routine is defined in blast stat.h with the following prototype.

double BLAST_GapDecayDivisor(double decayrate,
unsigned nsegs)

Let r denote the value of the nsegs parameter, α denote the value of decayrate
and w denote the return value of the BLAST GapDecayDivisor routine. The
return value is computed by the formula

w = (1− α)αr−1.

For a collection of size r, one should divide the E-value by w before compar-
ing the collection with other collections. The routines BLAST SmallGapSumE,

18

BLAST LargeGapSumE and BLAST UnevenGapSumE should each be passed the
value of w in the parameter named weight divisor to cause this division to be
performed.

For both gapped and ungapped blastn searches, α is set to 0.5. For other
BLAST programs, α is set to 0.5 for ungapped searches and 0.1 for gapped
searches. The value of α is obtained from the gap decay rate field of an
object of type BlastLinkHSPParameters. This field is set within the func-
tion BlastLinkHSPParametersNew when the BlastLinkHSPParameters object
is first initialized. The BlastLinkHSPParametersNew routine initializes the
gap decay rate field using the constant BLAST GAP DECAY RATE or the con-
stant BLAST GAP DECAY RATE GAPPED, both of which are #defined in the file
blast parameters.h.

8 Karlin block objects in BlastScoreBlk objects

Each BLAST search has one or more query contexts. Depending on the type
of search, a context may represent a distinct translation frame of the nucleotide
query, a distinct strand of a double-stranded molecule or simply a distinct query
sequence. In general, each query context needs an individual set of Karlin-
Altschul parameters to evaluate ungapped alignments and a different set to
evaluate gapped alignments. Furthermore PSI-BLAST needs to have both the
parameters for the position-specific search and parameters for the general search
available. One purpose of BlastScoreBlk objects is to hold the several sets of
Karlin block objects needed to perform a particular BLAST search.

Typically, Karlin blocks are accessed either through pointers passed as func-
tion arguments or through the data fields of an object of type BlastScoreBlk.
Structures of type BlastScoreBlk have as fields four arrays of pointers to Kar-
lin blocks: kbp std, kbp psi, kbp gap std and kbp gap psi. These arrays are
dynamically allocated as separate arrays by BlastScoreBlkNew. All four arrays
are allocated to have the same length, represented by the number of contexts
field of the BlastScoreBlk. The BlastScoreBlkFree function deletes the dy-
namically allocated arrays and the Blast KarlinBlk objects that they point to.
The four arrays of Karlin blocks are initialized by one of several routines dis-
cussed in this section: s PHIScoreBlkFill, Blast ScoreBlkKbpUngappedCalc
or Blast ScoreBlkKbpGappedCalc.

In contrast, the kbp and kbp gap fields of a BlastScoreBlk object are aliases
to existing arrays, rather than arrays themselves. The kbp field always points to
either kbp std or kbp psi. Similarly, the kbp gap field always points to either
kbp gap td or kbp gap psi. These pointers are used by routines that do not
need to know whether or not a PSI-BLAST search is being performed; they only
need an appropriate set of Karlin-Altschul parameters.

There is an anomalous use of aliasing among the arrays of Karlin blocks.
The s PHIScoreBlkFill routine sets kbp std to be an alias to kbp gap std.
There appears to be no other routine that treats these two arrays as equivalent.

A BlastScoreBlk object also has a field named kbp ideal that is a pointer

19

BlastSetup_ScoreBlkInit

Blast_ScoreBlkKbpGappedCalc Blast_ScoreBlkKbpUngappedCalc

s_PHIScoreBlkFill

Blast_KarlinBlkGappedCalc Blast_KarlinBlkUngappedCalc

Blast_ScoreBlkKbpIdealCalc

Figure 2: BlastSetup ScoreBlkInit invokes one or more subroutines to ini-
tialize Karlin blocks within a BlastScoreBlk.

to a single Karlin block. This Karlin block holds values of the ungapped Karlin-
Altschul parameters calculated as if both the query and the subject sequence had
exactly average amino acid or nucleotide composition. For amino acid sequences,
the average frequencies are obtained from Robinson and Robinson [12]. For
nucleotide sequences, an average frequency of 0.25 is used for each nucleotide.

8.1 BlastSetup ScoreBlkInit

The BlastSetup ScoreBlkInit function is declared in the blast setup.h file
to have the prototype.

Int2
BlastSetup_ScoreBlkInit(

BLAST_SequenceBlk* query_blk,
BlastQueryInfo* query_info,
const BlastScoringOptions* scoring_options,
EBlastProgramType program_number,
Boolean phi_align,
BlastScoreBlk* *sbpp,
double scale_factor,
Blast_Message* *blast_message)

The purpose of BlastSetup ScoreBlkInit is to initialize a BlastScoreBlk.
BlastSetup ScoreBlkInit invokes one or more subroutines to initialize the
Karlin blocks within a BlastScoreBlk; see Figure 2. It invokes the function
s PHIScoreBlkFill to obtain all Karlin-Altschul parameters if the program is
PHI-BLAST. Otherwise, it invokes the Blast ScoreBlkKbpUngappedCalc rou-
tine to calculate the ungapped Karlin-Altschul parameters, and, if the search

20

is gapped, invokes the Blast ScoreBlkKbpGappedCalc routine to calculate the
gapped parameters.

8.2 Blast ScoreBlkKbpUngappedCalc

The Blast ScoreBlkKbpUngappedCalc routine is defined in blast stat.c with
the following prototype.

Int2
Blast_ScoreBlkKbpUngappedCalc(EBlastProgramType program,

BlastScoreBlk* sbp,
Uint1* query,
BlastQueryInfo* query_info)

The Blast ScoreBlkKbpUngappedCalc routine initializes those Karlin blocks
within a BlastScoreBlk object that are used to evaluate the significance of
ungapped alignments.

The routine first invokes Blast ScoreBlkKbpIdealCalc to initialize the field
kbp ideal. For each query context, the routine invokes BlastScoreFreqCalc
to calculate a set of amino acid or nucleotide frequencies and then invokes
Blast KarlinBlkUngappedCalc to initialize the Karlin blocks

sbp->kbp_std[context_number]

and

sbp->kbp_psi[context_number]

based on that set of amino acid or nucleotide frequencies. Both of these Karlin
blocks are set to the same values, because Blast KarlinBlkUngappedCalc is
invoked twice with the same set of input parameters; there does not appear to
be any intervening code that would alter the calculation.

For tblastx, blastx and RPS-tBLASTn, programs that all translate nu-
cleotide queries, the computed values of λ in the kbp std array are compared
with the value of λ in the kbp ideal field. If

kbp_std[context]->Lambda ≥ kbp_ideal->Lambda,

then kbp std[context] is replaced with kbp ideal. Therefore for translated
searches, the smaller, more conservative λ is used.

8.3 Blast ScoreBlkKbpGappedCalc

The routine Blast ScoreBlkKbpGappedCalc is defined with the following pro-
totype in the source file blast setup.c.

Int2
Blast_ScoreBlkKbpGappedCalc(BlastScoreBlk * sbp,

const BlastScoringOptions * scoring_options,
EBlastProgramType program, BlastQueryInfo * query_info);

21

The purpose of this routine is to initialize the Karlin blocks that contain pa-
rameters for evaluating the significance of gapped alignments.

For ungapped alignments the Karlin-Altschul parameters may be calculated,
but for gapped alignments the parameters are obtained by simulation. The re-
quired simulations have only been performed for protein alignments. If the
program is blastn, then the Blast ScoreBlkKbpGappedCalc routine simply du-
plicates the ungapped Karlin blocks. If the program is not blastn, then the
Blast ScoreBlkKbpGappedCalc routine calls the Blast KarlinBlkGappedCalc
routine to initialize the kbp gap std array.

If the program is not blastn, the Blast KarlinBlkGappedCalc routine du-
plicates the values of the kbp gap std array in the kbp gap psi array. As of
January 2005, the kbp gap psi array is not initialized for blastn, because PSI-
BLAST has not yet been implemented for nucleotide sequences.

8.4 s PHIScoreBlkFill

The static routine s PHIScoreBlkFill is defined in blast setup.c with the
following prototype.

static Int2
s_PHIScoreBlkFill(

BlastScoreBlk* sbp, const BlastScoringOptions* options,
Blast_Message** blast_message)

The routine initializes the Karlin block sbp->kbp_gap_std[0]. It also makes
kbp std an alias for kbp gap std. This is the only place in the code that these
two pointers are made aliases to the same array.

The values of λ, K and paramC are obtained from one of several precomputed
sets of values. Which set of values is used depends on the matrix name, the gap
open penalty and the gap extend penalty. In other words, the set of parameters
chosen depends on the values the following three expressions:

• options->matrix;

• options->gap_open; and

• options->gap_extend.

s PHIScoreBlkFill initializes only the first element of kbp std and thus
assumes that there is only one context. This is unlikely to be a problem since
PHI-BLAST accepts only a single protein query.

8.5 Blast ScoreBlkKbpIdealCalc

The Blast ScoreBlkKbpIdealCalc routine is declared in the file blast stat.h
with the following prototype.

Int2 Blast_ScoreBlkKbpIdealCalc(BlastScoreBlk* sbp)

22

The purpose of this routine is to initialize the Karlin block sbp->kbp_ideal.
This Karlin block holds values of the ungapped Karlin-Altschul parameters cal-
culated as if both the query and the subject sequence had exactly average amino
acid or nucleotide composition.

The Blast KarlinBlkIdealCalc routine calls the BlastResFreqStdComp
routine and the BlastScoreFreqCalc routine to obtain a “standard” object of
type Blast ScoreFreq that represents the residue frequencies. It passes this
object to Blast KarlinBlkUngappedCalc to obtain values for the statistical
parameters.

9 Composition-based statistics

The routines of section 8 initialize gapped Karlin-Altschul parameters using
precomputed tables generated by simulation using sequences of typical compo-
sition. The routines initialize the ungapped Karlin-Altschul parameters using
the amino-acid or nucleotide composition of the query, but use a hypothetical
subject sequence of standard composition.

BLAST is also able to evaluate alignments using a scoring system that takes
both the composition of the query and the composition of a specific subject
sequence into account. This feature is available for blastp and is under active
development for tblastn. Composition-based scoring systems provide a more
relevant measure of significance for sequences of biased composition than do
standard scoring systems. To generate a composition-based scoring system,
BLAST alters both the ungapped Karlin-Altschul parameters and the substitu-
tion matrix that is used to score alignments.

9.1 Kappa RedoAlignmentCore

The routines for applying composition-based statistics are located in the file
blast kappa.c. The sole external entry point to the functionality in this file is
the Kappa RedoAlignmentCore, which has the following prototype.

Int2
Kappa_RedoAlignmentCore(

EBlastProgramType program_number,
BLAST_SequenceBlk * queryBlk,
BlastQueryInfo* queryInfo,
BlastScoreBlk* sbp,
BlastHSPStream* hsp_stream,
const BlastSeqSrc* seqSrc,
const Uint1* gen_code_string,
BlastScoringParameters* scoringParams,
const BlastExtensionParameters* extendParams,
const BlastHitSavingParameters* hitParams,
const PSIBlastOptions* psiOptions,
BlastHSPResults* results)

23

Kappa_RedoAlignmentCore

Kappa_RecordInitialSearch

Kappa_RescaleSearch

WindowsFromHSPs

Kappa_AdjustSearch

Kappa_RestoreSearch

Figure 3: Kappa RedoAlignmentCore uses several subroutines to implement
composition-based statistics

The Kappa RedoAlignmentCore routine takes a list of candidate alignments,
generally representing several query-subject pairs, and recomputes the align-
ments and their scores. It optionally creates a composition-based scoring system
for each query-subject pair before recomputing the alignments; the flag

extendParams->options->compositionBasedStats

determines whether or not composition-based statistics are applied.
As of January 2005, the Kappa RedoAlignmentCore function is used only

for blastp and PSI-BLAST searches. A version of the BLAST code that may
use Kappa RedoAlignmentCore for tblastn and PSI-tBLASTn searches is under
active development, and much of the functionality for applying composition-
based statistics to translated subject sequences is already present.

The Kappa RedoAlignmentCore routine uses several subroutines to imple-
ment composition-based statistics; see Figure 3. Kappa RecordInitialSearch
records the initial values of all relevant parameters and Kappa RestoreSearch
restores these values. Thus, composition-based scoring systems are used only
within the Kappa RedoAlignmentCore routine, and the original scoring scor-
ing system is restored before the routine exits. The remaining three routines,
Kappa RescaleSearch, WindowsFromHSPs and Kappa AdjustSearch, are de-
scribed in this section.

Kappa RedoAlignmentCore also has the ability to recompute alignments
for specific query-subject pairs using the rigorous Smith-Waterman algorithm;
this is orthogonal to whether the scoring system has been altered for compo-
sition. The routines for computing a Smith-Waterman alignment do invoke

24

BLAST KarlinStoE simple to assign an E-value to the alignment.

9.2 Kappa RescaleSearch

The static routine Kappa RescaleSearch is defined in blast kappa.c with pro-
totype

static double
Kappa_RescaleSearch(Kappa_SearchParameters * sp,

BLAST_SequenceBlk* queryBlk,
BlastQueryInfo* queryInfo,
BlastScoreBlk* sbp,
BlastScoringParameters* scoringParams)

The purpose of Kappa RescaleSearch is to alter the scale of the initial scoring
system, in particular the initial scoring matrix. Because BLAST scores are
integers, increasing the scale of the scoring system allows higher precision scores
to be used. It is important to use these higher-precision scores when adjusting
matrix entries to reflect the composition of the query and subject sequences.

If composition-based statistics are not being used, Kappa RescaleSearch
does nothing but return the floating-point value 1.0. Otherwise it returns the
factor by which the scoring system is scaled. If the matrix is not BLOSUM62 20,
then the scale factor is the value of the constant SCALING FACTOR, which is
#defined in blast kappa.c to be 32. The BLOSUM62 20 matrix, which is used
only for internal NCBI experiments, uses the scale factor SCALING FACTOR/10,
where the division is integer division.

The scale of a scoring system is reflected directly by the parameter λ. As
equation (1) suggests, if scores are multiplied by a scale factor, then λ must
be divided by the same factor if HSPs are to be assigned the same E-values.
Rather than simply multiplying all scores by a factor, Kappa RescaleSearch
divides an ungapped λ by a scale factor to establish the desired scale of the
scoring system. It then generates a matrix that nearly matches that scale. For
blastp, the routine calls the computeScaledStandardMatrix, which generates
an appropriately scaled matrix using a table of frequency ratios. By generating
matrices in this fashion, Kappa RescaleSearch avoids scaling the rounding er-
rors contained in the standard matrices. As of January 2005, PSI-BLAST is still
under active development within the NCBI C++ toolkit. When PSI-BLAST is
fully implemented, Kappa RescaleSearch will perform a similar computation
using position-specific pseudo-frequencies.

9.3 WindowsFromHSPs

The static routine WindowsFromHSPs is defined in the file blast kappa.c with
the following prototype.

static void
WindowsFromHSPs(

25

BlastHSP * hsp_array[], Int4 hspcnt, Int4 border,
Int4 sequence_length, Kappa_WindowInfo ***pwindows,
Int4 * nWindows, Int4 * lWindows, Int4 * window_of_hsp)

Windows are intervals in a translation frame of the subject sequence. This
routine takes a list of HSPs and produces a list of windows, so that the subject
range and translation frame of each HSP is contained in exactly one window.
The range and frame of a window specifies the elements of the subject sequence
that are used when composition-based statistics are computed. Recomputed
alignments are also constrained to lie within their containing window.

For blastp and PSI-BLAST the WindowsFromHSPs routine creates exactly
one window. The subject range is the entire length of the subject sequence,
and the subject is untranslated so there is only one possible frame. For tblastn
and PSI-tBLASTn there would typically be more than one window, and each
window would be unlikely to include the entire length of the subject sequence.
However, as of January 2005, composition-based statistics have not been enabled
for tblastn and PSI-tBLASTn, and for these programs, the rules for generating
a list of windows from a list of HSPs are the subject of active research.

9.4 Kappa AdjustSearch

The static routine Kappa AdjustSearch is defined in blast kappa.c with the
following prototype.

static Int4
Kappa_AdjustSearch(

Kappa_SearchParameters * sp, Int4 queryLength,
Kappa_SequenceData * subject, Int4 ** matrix)

This routine creates a composition-based scoring system.
Kappa AdjustSearch uses the composition of the subject data, the composi-

tion of the query data and the given matrix to compute a set of score frequencies.
It then invokes impalaKarlinLambdaNR with this set of frequencies to generate
a value of λ appropriate for ungapped alignments of sequences with this com-
position. In general, the value of λ resulting from this computation is different
from the scaled λ used by Kappa RescaleSearch, which assumed a query and
subject sequence of standard composition.

Let λC be the value of λ determined from the composition of the query
and subject and let λS be the value of λ used by Kappa RescaleSearch. The
Kappa AdjustSearch routine computes a restricted ratio of these two values

rλ = median{LambdaRatioLowerBound, λC/λS , 1},

where LambdaRatioLowerBound is a constant #defined in blast kappa.c to be
0.5. It then invokes scaleMatrix function, which changes the scale of the entries
in the scoring matrix by multiplying their unrounded, floating point values by
rλ and rounding the result to the nearest integer.

26

10 PSI-BLAST and RPS-BLAST

As of January 2005, PSI-BLAST and RPS-BLAST are still under development
in the NCBI C++ toolkit code. PSI-BLAST creates a position-specific matrix
based on the residue profile of a group of related alignments. It uses Karlin-
Altschul parameters to determine the scale of the elements in the position-
specific matrix. RPS-BLAST searches a set of position specific matrices for a
good match to a protein sequence. We do not discuss these programs further in
this document.

11 Routines operating on an array of HSPs

The routines of this section are part of the computational core of BLAST. Each
of these routines performs some operation on an array of High Scoring Pairs
(HSPs). An HSP is an object of type BlastHSP, defined in the file blast hits.h
as follows.

typedef struct BlastHSP {
Int4 score;
Int4 num_ident;
double bit_score;
double evalue;
BlastSeg query;
BlastSeg subject;
Int4 context;
GapEditBlock* gap_info;
Int4 num;
Uint4 pattern_length;

} BlastHSP;

Taken together, the query, subject, context and gap info fields describe an
alignment of a segment of the query sequence with a segment of a database se-
quence. The gap info field, if not NULL, contains traceback information for
the alignment, i.e. the location of gaps and contiguous segments within an
alignment. The query and subject fields are of type BlastSeg, defined in
blast hits.h as follows.

typedef struct BlastSeg {
Int2 frame; /**< Translation frame */
Int4 offset; /**< Start of hsp */
Int4 length; /**< Length of hsp */
Int4 end; /**< End of HSP */
Int4 gapped_start;/**< Where the gapped extension

started. */
} BlastSeg;

27

11.1 Blast HSPListGetEvalues

The Blast HSPListGetEvalues routine is declared in the file blast hits.h
with the following prototype.

Int2
Blast_HSPListGetEvalues(

const BlastQueryInfo* query_info,
BlastHSPList* hsp_list, Boolean gapped_calculation,
BlastScoreBlk* sbp, double gap_decay_rate)

The routine calculates E-values of each HSP in the array hsp list by invoking
the BLAST KarlinStoE simple function with the score field of the HSP, an
appropriate Karlin block and an appropriate effective length. Let hsp denote
the HSP under consideration. If the program is not blastn and the calculation
is gapped, then the following Karlin block is used.

sbp->kbp_gap[hsp->context]

Otherwise, the Karlin block

sbp->kbp[hsp->context]

is used. If sbp->effective search sp is not zero, then its value is used for the
effective search space for every HSP. Otherwise the value of

query_info->eff_searchsp_array[hsp->context]

is used.

11.2 Blast HSPListGetBitScores

The Blast HSPListGetBitScores routine is declared in the file blast hits.h
with the following prototype.

Int2
Blast_HSPListGetBitScores(BlastHSPList* hsp_list,

Boolean gapped_calculation,
BlastScoreBlk* sbp)

It assigns normalized “bit” scores to each HSP in the list, using the formula

SB = (λS − lnK)/ ln 2,

which was introduced as equation (2). For gapped searches, statistical parame-
ters are taken from the Karlin block

sbp->kbp_gap[hsp->context],

and for ungapped searches, they are taken from

sbp->kbp[hsp->context].

28

BLAST_LinkHsps

s_BlastEvenGapLinkHSPs s_BlastUnevenGapLinkHSPs

BLAST_SmallGapSumE

BLAST_LargeGapSumE

s_SumHSPEvalue

BLAST_UnevenGapSumE

Figure 4: The BLAST LinkHsps routine invokes either s BlastEvenGapLinkHSPs
or s BlastUnevenGapLinkHSPs

11.3 HSP Linking For Sum Statistics

Section 7 discusses routines for evaluating the significance of a linked set of
alignments. In this section, we discuss routines that partition a collection of
distinct alignments into linked sets.

The external routine for applying HSP linking is BLAST LinkHsps. This
routine will call one of two subroutines to perform the necessary computation:
s BlastEvenGapLinkHSPs or s BlastUnevenGapLinkHSPs. Each of these two
routines uses a different algorithm for creating candidate linked sets.

11.3.1 BLAST LinkHsps

The BLAST LinkHsps routine is declared in the file link hsps.c with the fol-
lowing prototype.

Int2
BLAST_LinkHsps(EBlastProgramType program_number,

BlastHSPList* hsp_list,
BlastQueryInfo* query_info,
Int4 subject_length,
BlastScoreBlk* sbp,
const BlastLinkHSPParameters* link_hsp_params,
Boolean gapped_calculation)

29

The BLAST LinkHsps routine creates a set of doubly-linked lists of HSPs;
each list represents an ordered collection of distinct local alignments and each
HSP is contained in exactly one list. The routine uses sum statistics to eval-
uate the significance of multiple distinct alignments. Sum statistics are ulti-
mately computed using Karlin blocks by involving the BLAST SmallGapSumE,
BLAST LargeGapSumE and BLAST UnevenGapSumE routines, as described in sec-
tion 7.

The BLAST LinkHsps routine does not perform any computation itself, but
rather calls either s BlastEvenGapLinkHSPs or s BlastUnevenGapLinkHSPs to
perform the computation; see Figure 4. The routine that is used is chosen by
the following rule. If the program is tblastn, blastx, or PSI-tBLASTn and

hit_params->options->longest_intron > 0,

then BLAST LinkHsps invokes s BlastUnevenGapLinkHSPs. Otherwise, it in-
vokes s BlastEvenGapLinkHSPs.

The decision of whether to invoke BLAST LinkHsps at all or to set the pa-
rameter longest intron to a nonzero value is made when the options for the
command-line or web application are processed. Since there are an open-ended
number of applications that use the BLAST code, it is not possible to state
with absolute certainly how these decisions are made. Typically, however,
BLAST LinkHsps is invoked if the overall search is ungapped or if one of the
sequences is translated before being aligned. The s BlastEvenGapLinkHSPs
routine preserves the legacy behavior of ungapped BLAST searches, and is
invoked by default for ungapped searches; for ungapped translated searches
longest intron is by default set to zero. For translated gapped searches,
longest intron is set to a positive number, 122, by default, causing the routine
s BlastUnevenGapLinkHSPs to be invoked. For other gapped searches, no HSP
linking is typically performed.

11.3.2 s BlastUnevenGapLinkHSPs and s SumHSPEvalue

The static s BlastUnevenGapLinkHSPs routine is defined with the following
prototype in the file link hsps.c.

static Int2
s_BlastUnevenGapLinkHSPs(

EBlastProgramType program,
BlastHSPList* hsp_list, BlastQueryInfo* query_info,
Int4 subject_length, BlastScoreBlk* sbp,
const BlastLinkHSPParameters* link_hsp_params,
Boolean gapped_calculation)

This routine is used predominantly for searches in which one sequence is trans-
lated, but the other is not. The terminology “Uneven Gap” refers to the fact
that different, and possibly longer, gaps are allowed in between HSPs in the
translated sequence than are allowed in the other sequence.

30

Not every set of HSPs may be linked together. We describe the rules used by
s BlastUnevenGapLinkHSPs to determine whether a sequence is admissible; the
rules used by s BlastEvenGapLinkHSPs are similar but differ in some details.
We then outline, in Algorithm 11.1, the rules that s BlastUnevenGapLinkHSPs
uses to choose candidate sets to test for admissibility.

Let A = {Aj} for j = 1, . . . , size(A) be a collection of HSPs, sorted in as-
cending order by the offset in the query sequence. Let us introduce the following
notation for parameters to the algorithm.

γs = link_hsp_params->longest_intron

γq = link_hsp_params->gap_size

ω = link_hsp_params->overlap_size,

where link hsp params is an argument to s BlastUnevenGapLinkHSPs. The γs

parameter represents the longest gap permitted in the subject sequence, which is
typically a nucleotide sequence. The γq parameter is the longest gap permitted
in the query, which is typically a protein sequence. The BLAST UnevenGapSumE
routine handles blastx searches specially; for blastx searches, it reverses the role
of query and subject. It does this because for blastx, the query is the translated
sequence. For searches that use translated sequences, the restrictions on the
gap and overlap size are enforced on the translated sequence rather than on the
original sequence.

A set {Aj | j ∈ J} is admissible if the following seven conditions hold for all
adjacent pairs of indices j, k ∈ J , with k > j:

query end(Ak) ≥ query end(Aj); (25a)
query offset(Ak) ≥ query end(Aj)− ω; (25b)
query offset(Ak) ≤ query end(Aj) + γq; (25c)

subject offset(Ak) ≥ subject offset(Aj); (25d)
subject end(Ak) ≥ subject end(Aj); (25e)

subject offset(Ak) ≥ subject end(Aj)− ω; and (25f)
subject offset(Ak) ≤ subject end(Aj) + γs. (25g)

Note that because A is sorted by query offset in ascending order, it follows that
for adjacent pairs of indices j, k ∈ J , k > j,

query offset(Ak) ≥ query offset(Aj).

Note further that singleton sets are always admissible because there are no
pairs of indices that must meet the conditions (25). If either the subject or
query sequence is a DNA sequence, we impose the further condition that all
alignments in the set are to the same strand of DNA.

Given an index set, the following function computes a normalized sum score,
in nats, for those HSPs that correspond to an index in the set.

S(J) =
∑
j∈J

[λj × score(Aj)− lnKj], (26)

31

where λj and Kj denote the values of the statistical parameters appropriate for
use with Aj . If the search is gapped, the statistical parameters are taken from

sbp->kbp_gap[hsp->context],

where hsp refers to Aj . If the search is ungapped, the parameters are taken
from

sbp->kbp[hsp->context].

From the normalized sum score, one can compute an E-value for a collection of
alignments. This E-value is computed using the static s SumHSPEvalue routine,
defined in the link hsps.c file with the following prototype.

static double
s_SumHSPEvalue(EBlastProgramType program_number,

BlastQueryInfo* query_info, Int4 subject_length,
const BlastLinkHSPParameters* link_hsp_params,
LinkHSPStruct* head_hsp, LinkHSPStruct* new_hsp,
double* xsum)

We do not describe this routine in detail, but simply note that it ultimately
invokes BLAST UnevenGapSumE which is discussed in detail in section 7. Let
us denote by EU (J) the result of invoking s SumHSPEvalue on the HSPs with
indices in the set J .

The following pseudocode generates a collection of linked sets {Li}, where
Ai ∈ Li for each i = 1, . . . , size(A). The collection {Li} partitions the set A of
HSPs. Note that if Ai ∈ Li and Aj ∈ Li then Li = Lj , so in general {Li} will
have fewer than size(A) unique members.

Algorithm 11.1. find linked sets(A, ω, γq, γs)
Let n = size(A).
Lk ← {Ak} for k = 1, . . . , n
while A 6= ∅ do

Choose Ai so that score(Ak) = max{score(Ak) | Ak ∈ A}.
N ← Li

while {Lk | Lk 6= N and Lk ∪N is admissible} is not empty do
Choose Lj so that

EU (Lk ∪N) = min {EU (Lk ∪N) | Lk ∪N is admissible}.
if EU (Lj ∪N) < EU (N) and EU (Lj ∪N) < EU (Lj) then

N ← Lj ∪N
Lk ← N for all k such that Ak ∈ N

else
break

end if
end do
A ← A \N

end do

32

We leave unspecified the rules for choosing an HSP with highest score and
linked set with smallest E-value, but assert that ties are broken deterministically.
The parameters ω, γq and γs are used to test whether a linked set is admissible,
using the rules (25).

11.3.3 s BlastEvenGapLinkHSPs

The static routine s BlastEvenGapLinkHSPs is defined in the file link hsps.c
with the following prototype.

static Int2
s_BlastEvenGapLinkHSPs(EBlastProgramType program_number,

BlastHSPList* hsp_list,
BlastQueryInfo* query_info, Int4 subject_length,
BlastScoreBlk* sbp,
const BlastLinkHSPParameters* link_hsp_params,
Boolean gapped_calculation)

Like s BlastUnevenGapLinkHSPs, this routine uses a heuristic to generate a
collection of linked sets. The s BlastEvenGapLinkHSPs routine is the older of
the two and suffers from the restriction that the maximum gap size in the query
and the subject be the same. It has been retained for backwards compatibility
with earlier versions of BLAST and is not recommended for use in new code.

The rules for which linked sets are admissible are similar to the rules given
by (25). There are three important differences. The first is that, as previously
mentioned, the maximum size of the gap in the query must equal the maximum
size of the gap in the subject. For the remainder of this section, these two
equivalent values will be denoted by γ.

The second difference is that the maximum permitted overlap between to
distinct alignments is a function of the length of each alignment. Rather than
stating the rules for admissibility in detail, we simply assert that a suitable
function

admissible(A, I, γ)

may be defined, where A is an array of HSPs and I is a collection of indices
into A. Moreover, s BlastEvenGapLinkHSPs may consider both sets for which
the value of γ is finite and sets for which γ is infinite. These cases are know as
the “small gap rule” and “large gap rule” respectively.

The significance of linked sets admissible to the small gap rule is evaluated
using the BLAST SmallGapSumE routine, whereas the significance of linked sets
admissible to the large gap rule is evaluated using the BLAST LargeGapSumE
routine. In either case, the sum score for a linked set of HSPs is computed
using equation (26). For a discussion of the other parameters to the sum
statistics routines, see section 7. In this section, we denote the result of the
BLAST SmallGapSumE routine with appropriate parameters for linked set L by
ES(L) and the result of the BLAST LargeGapSumE routine by EL(L).

The general operation of the s BlastEvenGapLinkHSPs routine is to find a
heuristically desirable linked set admissible to the large gap rule and a desirable

33

linked set admissible to the small gap rule. It evaluates the significance of each
linked set and chooses the better of the two. As described below in the text
and in Algorithm 11.3, the parameter link_hsp_params->gap_prob is used to
weight the E-values of these linked sets to compensate for the effect of choosing
the better of the two. It must be noted, however, that there are parameter
settings that will cause the routine to use either the small or large gap rule
exclusively.

Once a linked set has been chosen, it removes the set from further consider-
ation, and reapplies the algorithm to the remaining HSPs. The desirability of
a given linked set is measured by a weighted sum function

w(A, I, ν) =
∑
i∈I

(score(Ai)− ν) ,

where I is an index set and ν a positive integer weight; the weight for the
small gap rule is typically different than the weight for the large gap rule. The
following pseudocode is a simplified version of the algorithm that link hsps
uses to find the optimal linked set for a given weight ν and (possibly infinite)
gap size γ.

Algorithm 11.2. find best weighted score(A, ν, γ)
I0 ← ∅; best← 0
for i = 1, . . . , size(A) do

j ← 0
if score(Ai) > ν then

for k = i− 1 down to 0 do
if admissible(A, Ik ∪ {i}, γ) and

w (A, Ik ∪ {i}, ν) > w (A, Ij ∪ {i}, ν)
then

j ← k
end if

end do
end if
Ii ← Ij ∪ {i}
if best = 0 or w(A, Ii, ν) ≥ w(A, Ibest, ν) then best← i; end if

end do
return Ibest

The set I0 ∪ {i} = {i} is always admissible, so for 0 ≤ i ≤ size(A) the
index set Ii exists. Algorithm 11.3 returns an index set that yields a maximal
weighted score. The algorithm omits many details present in the BLAST code
that accelerate the search but that do not affect the answer.

We introduce the following notation for parameters to the algorithm.

γ = link_hsp_params->gap_size

νS = link_hsp_params->cutoff_small_gap

νL = link_hsp_params->cutoff_large_gap

β = link_hsp_params->gap_prob,

34

where link hsp params is an argument to s BlastEvenGapLinkHSPs. The rule
the routine uses to choose a linked set is similar to the following pseudocode.

35

Algorithm 11.3. find best(A, νL, νS, β, γ)
Let IL ← find best weighted score(A, νL, ∞)
if νS = 0 then

return IL

else
Let eL ← EL ({Ai ∈ A | i ∈ IL}).
if size(IL) > 1 then

if 1− β 6= 0 then eL ← eL/(1− β); else eL ←∞; end if
end if
Let IS ← find best weighted score(A, νS , γ)
Let eS ← ES ({Ai ∈ A | i ∈ IS}).
if size(IS) > 1 then

if β 6= 0 then eS ← eS/β; else eS ←∞; end if
end if
if eS ≤ eL then

return IS

else
return IL

end if
end if

The s BlastEvenGapLinkHSPs routine removes the resulting linked set from
the collection of HSPs to be considered for linking, and reapplies the equivalent
of Algorithm 11.3 on the remaining HSPs, until the set of remaining HSPs
is empty. The s BlastEvenGapLinkHSPs routine is able to take advantage of
partial results from one run of Algorithm 11.3 to accelerate the next run. We
do not discuss this type of optimization here; Algorithm 11.3 is intended to be
only a rough sketch of the operation of s BlastEvenGapLinkHSPs.

12 Routines that initialize parameters used to
compute alignments

BLAST generates a collection of HSPs in stages. BLAST starts with one or more
word hits, short matches between a query and subject sequence, and extends
them into ungapped and then gapped alignments. At various stages in the
process, BLAST will evaluate the significance of the alignment produced so far
to determine whether to continue processing the current hit.

The routines of this section find values for cutoff scores for allowing a current
hit to proceed from one stage of the BLAST algorithm to the next. The routines
also compute a different set of cutoff scores, known as x-drop values, that control
when BLAST stops searching for an optimal extension. In general, cutoff scores
are calculated in one of two ways. In some cases, BLAST Cutoffs routine is
used to relate an E-value to a score sufficient to produce that E-value. In other
cases, cutoff scores are defined as constant, scale-independent bit scores. These

36

bit scores are rescaled to lie in the current scoring system, through the use of
appropriate values of λ and K.

12.1 s BlastFindValidKarlinBlk

Sometimes it is not possible to compute Karlin-Altschul parameters for all
frames of a translated query. It may be that a frame has severely atypical
composition which results in a positive average score, or it may be that a query
frame is completely masked. In any case, the s BlastFindValidKarlinBlk
searches an array of Karlin blocks to find the first element for which H, K and
λ are all positive; negative values are used to indicate that the parameters could
not be computed.

The static s BlastFindValidKarlinBlk routine is defined with the following
prototype in the file blast parameters.c.

static Int2
s_BlastFindValidKarlinBlk(Blast_KarlinBlk** kbp_in,

const BlastQueryInfo* query_info,
Blast_KarlinBlk** kbp_ret)

12.2 BLAST Cutoffs

The BLAST Cutoffs routine computes the minimum score that must be attained
by an HSP for that HSP to proceed to the next stage of the BLAST algorithm.
The cutoff score is based on the number of HSPs that are expected to achieve
a score that is at least that large; see Altschul et al. [6].

The function is declared in blast stat.h as follows.

Int2
BLAST_Cutoffs(Int4 *S, double* E,

Blast_KarlinBlk* kbp, Int8 searchsp,
Boolean dodecay, double gap_decay_rate)

The argument kbp is a Karlin block that supplies statistical parameters that
are used to convert between a score and an E-value. The searchsp argument
is the effective size of the search space, which is also needed to convert between
scores and E-values. The do decay parameter is a flag that, if true, indicates
that E-values are to be weighted to compensate for the effect of comparing
collections of multiple distinct alignments with a varying number of elements.
If do decay is true, then gap decay rate is used to compute an appropriate
weight; see section 7.4.

In general, the “*E” and “*S” parameters have different values on entry than
they do on exit. In this section, we use E and S to indicate the values of the
parameters on entry and use Ê and Ŝ to indicate the corresponding values on
exit.

Unless the BLAST Cutoffs routine is passed exceptional values for its in-
put parameters, it computes the smallest value of Ŝ that yields an E-value no

37

larger than E. To express the operation the routine in reasonably compact
mathematical notation, we introduce the following functions.

ES(S) = BLAST KarlinStoE(S, kbp, searchsp) (27a)
SE(E) = BlastKarlinEtoS(E, kbp, searchsp) (27b)

We also introduce the scalar

µ =
{

BLAST GapDecayDivisor(r, 1) if dodecay = TRUE and 0 < r < 1;
1 otherwise,

(28)
where r is the function argument gap decay rate. Under normal conditions,

Ŝ = SE(µE) and Ê = E. (29)

The BLAST Cutoffs routine contains code to handle exceptional values of
S and E. In the BLAST code, as of January 2005, S is always explicitly set
to zero in the calling routine before BLAST Cutoffs is invoked. However, the
BLAST Cutoffs routine has code to handle the case in which S is positive.
Similarly, the routine has code to handle the case in which E is nonpositive; we
see no valid circumstance in the current calls to BLAST Cutoffs in which the
value passed as E would be nonpositive.

The logic that the BLAST Cutoffs routine uses to compute Ŝ and Ê, includ-
ing logic to handle exceptional values of S and E, follows. We emphasize that
for nonexceptional values of S and E, this logic reduces to equation (29).

If E ≤ 0, then Ê and Ŝ are computed as follows.

Ŝ = max(S, 1) and Ê = ES(Ŝ)/µ.

If, on the other hand, E > 0, then the values are computed by the equations

Ŝ = max(S, SE(µE))

Ê =
{

ES(Ŝ)/µ if S = Ŝ;
E otherwise.

12.3 Cutoff values used to compute and save ungapped
alignments

Cutoff values used to compute and save ungapped alignments are stored in
an object of type BlastHitSavingParameters, which is defined in the file
blast parameters.h to be

typedef struct BlastInitialWordParameters {
BlastInitialWordOptions* options;
Int4 x_dropoff_init;
Int4 x_dropoff;
Int4 cutoff_score;

} BlastInitialWordParameters

38

The options field contains values that are used to compute the other fields of a
BlastInitialWordParameters, but which do not depend on the scoring system.
The cutoff score field is the minimum score an ungapped alignment must
attain to be saved for processing by the next stage of BLAST. If an ungapped
search is being performed, then the next stage is the computation of linked
sets of HSPs. If a gapped search is being performed, then the next stage is
gapped extension. In the case of a gapped search, not all ungapped alignments
saved are ultimately extended, due to tests that eliminate alignments completely
contained within the endpoints of a higher-scoring gapped alignment. We do
not discuss these containment tests further in this document.

The x dropoff field is a cutoff used during an ungapped extension. When-
ever the current score of an ungapped leftward or rightward extension falls more
the x dropoff below the current best score for the extension, the algorithm stops
extending the alignment in that direction. The x dropoff init field is set in
the BlastInitialWordParametersNew function and used to set x dropoff in
the BlastInitialWordParametersUpdate function.

We remark that the gap x dropoff and gap x dropoff final fields of a
BlastExtensionParameters object serve a similar purpose to the x dropoff
field of a BlastInitialWordParameters object, but are used exclusively for
gapped extensions. The BlastExtensionParameters datatype is discussed in
Section 12.4.

12.3.1 BlastInitialWordParametersNew

The BlastInitialWordParametersNew routine creates and initializes a new
instance of BlastInitialWordParameters. The routine is declared in the file
blast parameters.h as follows.

Int2
BlastInitialWordParametersNew(

EBlastProgramType program_number,
const BlastInitialWordOptions* word_options,
const BlastHitSavingParameters* hit_params,
BlastScoreBlk* sbp,
BlastQueryInfo* query_info,
Uint4 subject_length,
BlastInitialWordParameters* *parameters)

The options field of the structure is given the value of the function argument
named word options. The x dropoff init field is set using the formula

x dropoff init =
⌈
r × d0 ln 2

λ

⌉
, (31)

where d0 is the value of word options->x dropoff and the factor r is the
value of sbp->scale factor. As of January 2005, sbp->scale factor is set
to the constant 1.0 in blast stat.c, but this is expected to change as more

39

modules are ported from the C toolkit to the C++ toolkit. The value of λ
used by equation (31) is taken from the Karlin block found when the routine
s BlastFindValidKarlinBlk is applied to the array sbp->kbp std. The field
x dropoff represents the dropoff value of an ungapped extension, so the value
of λ from kbp std is used.

A call to BlastInitialWordParametersUpdate initializes the other fields of
the BlastInitialWordParameters object.

12.3.2 BlastInitialWordParametersUpdate

The BlastInitialWordParametersUpdate routine is declared with the follow-
ing prototype in the file blast parameters.h.

Int2
BlastInitialWordParametersUpdate(

EBlastProgramType program_number,
const BlastHitSavingParameters* hit_params,
BlastScoreBlk* sbp,
BlastQueryInfo* query_info, Uint4 subj_length,
BlastInitialWordParameters* parameters)

This routine finishes the calculation of parameters that is begun by the routine
BlastInitialWordParametersNew. For some types of search, it is also used to
calculate parameters specific to each subject sequence.

To calculate a value for the cutoff score field of the function argument
parameters, this routine first calculates an intermediate value that is denoted
by cutoff s. If sbp->scale_factor > 0 it scales cutoff s before proceeding,
by executing the following line:

cutoff_s *= (Int4)sbp->scale_factor;

The routine then chooses cutoff score to be the smaller of cutoff s and
hit params->cutoff score max.

The calculation of cutoff s is done differently for blastn than it is done for
other searches. Let us discuss first how cutoff s is calculated for searches other
than blastn; we discuss the case of blastn later. Let gap trigger be defined by
the formula

gap trigger = (t0 ln 2 + lnKu)/λu,

where t0 is the value of

parameters->options->gap_trigger

and λu and Ku are obtained by applying s BlastFindValidKarlinBlk to the
array sbp->kbp std. For gapped searches cutoff_s = gap_trigger. If the
search is ungapped, then an additional score, denoted here by SE , is calculated
by applying BLAST Cutoffs to the E-value returned by s GetCutoffEvalue.
The s GetCutoffEvalue routine returns a constant value for each type of search.

40

The statistical parameters used by BLAST Cutoffs are obtained by applying
s BlastFindValidKarlinBlk to the array sbp->kbp std. The other parame-
ters to BLAST Cutoffs are described below. For ungapped searches, cutoff s
is set to the smaller of gap_trigger and SE .

For blastn searches, the value of gap trigger is ignored. Instead SE com-
puted by invoking BLAST Cutoffs as above, except that for gapped blastn the
Karlin block is obtained by applying s BlastFindValidKarlinBlk to the array
sbp->kbp gap. The routine then sets cutoff s to SE unconditionally.

In all the calls to BLAST Cutoffs mentioned above, the effective search space
size is given by the expression

MIN(subj_length, (Uint4) avg_qlen)*subj_length

where subj length is a function argument and avg qlen is the average length
of a query sequence, taken over all contexts.

BLAST Cutoffs optionally applies an adjustment to the input E-value to
compensate for the effect of choosing the best among several linked sets of
HSPs if sum statistics are used. If sum statistics are be used, the decay rate is
the value of

hit_params->link_hsp_params->gap_decay_rate

For gapped blastn, and any other searches for which sum statistics are disabled,
the decay rate is set to zero, which has the effect of causing the decay rate to
be ignored.

Finally, BlastInitialWordParametersUpdate also sets the field x dropoff.
Normally, x dropoff is set to the value of the field x dropoff init, but there
is code to handle exceptional circumstances. If both the x dropoff init field
and the cutoff score field are nonzero, then x dropoff is set to the lesser
of cutoff score and the field x dropoff init. Because x dropoff init is
normally less than the minimum score of a seed word, it would be excep-
tional for cutoff score to be smaller than x dropoff init. Furthermore, if
x dropoff init is zero and cutoff score is nonzero, then x dropoff would
be set unconditionally to cutoff score. The default value of x dropoff init
corresponds to a score of 7 or 20 bits, and it would be extraordinary to use
a scoring system where these bit scores scale to zero. However, some BLAST
executables provide a command line option that can be used to override the
default value of x dropoff init.

12.4 BlastExtensionParametersNew

The BlastExtensionParametersNew routine creates and initializes a new in-
stance of BlastExtensionParameters. The function is declared in the file
blast parameters.h with the following prototype.

41

Int2 BlastExtensionParametersNew(
EBlastProgramType program_number,
const BlastExtensionOptions* options,
BlastScoreBlk* sbp,
BlastQueryInfo* query_info,
BlastExtensionParameters* *parameters)

The BlastExtensionParameters datatype is defined in blast parameters.h
as follows.

typedef struct BlastExtensionParameters {
BlastExtensionOptions* options;
Int4 gap_x_dropoff;
Int4 gap_x_dropoff_final;

} BlastExtensionParameters;

The datatype is closely related to the BlastExtensionOptions datatype, which
contains many similarly named fields. BlastExtensionOptions datatype is
defined in blast options.h as follows.

typedef struct BlastExtensionOptions {
double gap_x_dropoff;
double gap_x_dropoff_final;
EBlastPrelimGapExt ePrelimGapExt;
EBlastTbackExt eTbackExt;
Boolean compositionBasedStats;

} BlastExtensionOptions;

The distinction between the similarly named fields of two datatypes is that
scale independent, “bit” values are stored as double precision values in an in-
stance of BlastExtensionOptions, whereas the corresponding values scaled
to a particular value of λ and K are stored as integers in an instance of
BlastExtensionParameters.

Let d and dF represent the gap x dropoff and gap x dropoff final fields
of the BlastExtensionParameters object. Let d0 and dF

0 be the corresponding
fields of the BlastExtensionOptions object. For any given set of parameters
λ and K, the fields are related by the following equations.

d = bd0 ln 2/λc
dF = bdF

0 ln 2/λc

The value of λ is taken from the Karlin block obtained by applying the routine
s BlastFindValidKarlinBlk to the sbp->kbp gap array.

If sbp->scale factor > 1, then the computed values of gap x dropoff and
gap x dropoff final are rescaled by multiplication by sbp->scale factor.

42

12.5 Routines that set fields in BlastHitSavingParameters
object

The BlastHitSavingParameters datatype is defined in blast parameters.h
as follows.

typedef struct BlastHitSavingParameters {
BlastHitSavingOptions* options;
Int4 cutoff_score;
Int4 cutoff_score_max;
BlastLinkHSPParameters* link_hsp_params;

} BlastHitSavingParameters;

It is difficult to characterize exactly what a BlastHitSavingParameters object
represents. The cutoff score field of the object represents the minimum score
that must be attained by an HSP after a gapped extension for that HSP to
proceed to the next stage of the BLAST algorithm. For ungapped searches, the
field is not relevant. The cutoff score max field is the largest permissible value
of the cutoff score field. The BlastInitialWordParametersUpdate function
also uses cutoff score max field of a BlastHitSavingParameters object as
the maximum permissible value of the cutoff for saving ungapped extensions. If
HSP linking is to be performed, then link hsp params is set to a non-nil value.

12.5.1 BlastHitSavingParametersNew

The BlastHitSavingParametersNew routine creates and initializes a new in-
stance of the BlastHitSavingParameters datatype. The function is declared
in the file blast parameters.h with the following prototype.

Int2
BlastHitSavingParametersNew(

EBlastProgramType program_number,
const BlastHitSavingOptions* options,
BlastScoreBlk* sbp, BlastQueryInfo* query_info,
Int4 avg_subj_length,
BlastHitSavingParameters* *parameters)

The BlastHitSavingParameters code does not use Karlin-Altschul parameters
directly, but rather invokes BlastHitSavingParametersUpdate, which uses the
scoring parameters to initialize the cutoff score and cutoff score max fields
of the new BlastHitSavingParameters object.

12.5.2 BlastHitSavingParametersUpdate

The BlastHitSavingParametersUpdate function is declared with the following
prototype in the blast parameters.h.

43

Int2
BlastHitSavingParametersUpdate(

EBlastProgramType program_number,
BlastScoreBlk* sbp, BlastQueryInfo* query_info,
Int4 avg_subject_length,
BlastHitSavingParameters* parameters);

This function sets the cutoff score and max cutoff score fields of an object of
type BlastHitSavingParameters. If parameters->options->cutoff score is
set to a value greater than zero, then both cutoff score and max cutoff score
are set to the product of that value with sbp->scale factor. Otherwise the
following procedure is used to set the fields.

BlastHitSavingParametersUpdate first selects a Karlin-block by invok-
ing the routine s BlastFindValidKarlinBlk on the sbp->kbp gap array for
a gapped search or the sbp->kbp array for an ungapped search. It then in-
vokes BLAST Cutoffs on options->expect value to obtain a value for the field
max cutoff score. The effective search space used is the search space of the
first context. The gap decay rate is not used.

For ungapped searches or if sum statistics are not being used, cutoff score
is set to max cutoff score. Otherwise BLAST Cutoffs is invoked again with
a E-value of 1.0 and a different search space, which is given by the following
expression.

MIN(avg_qlen, avg_subject_length) * (Int8)avg_subject_length

The datatype Int8 is a signed integer type with at least 64 bits of precision; the
size of the search space is frequently large enough to overflow 32 bit integers.
The value avg subject length is a function argument and avg qlen is the
average length of all query contexts. The gap decay rate, which is taken from
the value

params->link_hsp_params->gap_decay_rate,

is used in the call to BLAST Cutoffs. The value of cutoff score is the lesser
of the result from BLAST Cutoffs and the field cutoff score max.

Finally the computed values of cutoff score max and cutoff score are
rescaled by multiplication by sbp->scale factor.

12.6 CalculateLinkHSPCutoffs

The CalculateLinkHSPCutoffs routine is declared in the blast parameters.h
file with the following prototype.

44

void
CalculateLinkHSPCutoffs(

EBlastProgramType program,
BlastQueryInfo* query_info,
BlastScoreBlk* sbp,
BlastLinkHSPParameters* link_hsp_params,
const BlastInitialWordParameters* word_params,
Int8 db_length, Int4 subject_length)

The purpose of this routine it to calculate the weights used by the deprecated
s BlastEvenGapLinkHSPs routine to generate linked sets. These weights are
also effectively cutoffs, since no HSP that has score smaller than the given
weight is added to a linked set.

The s BlastEvenGapLinkHSPs routine can be invoked for gapped searches,
but the routine always uses an ungapped Karlin block, specifically

sbp->kbp[query_info->first_context],

to calculate the weights.

Appendix

A Blast KarlinBlkUngappedCalc details

This section is a detailed discussion of the Blast KarlinBlkUngappedCalc rou-
tine, described initially in section 3.1.

A.1 Developer comments

Version 1.0 February 2, 1990
Version 1.2 July 6, 1990

Program by: Stephen Altschul

Address: National Center for Biotechnology Information
National Library of Medicine
National Institutes of Health
Bethesda, MD 20894

Internet: altschul@ncbi.nlm.nih.gov
See: Karlin, S. and Altschul, S.F. “Methods for Assessing the Statistical

Significance of Molecular Sequence Features by Using General Scoring Schemes,”
Proc. Natl. Acad. Sci. USA 87 (1990), 2264-2268.

Computes the parameters λ and K for use in calculating the statistical
significance of high-scoring segments or subalignments.

45

The scoring scheme must be integer valued. A positive score must be possi-
ble, but the expected (mean) score must be negative.

A program that calls this routine must provide the value of the lowest pos-
sible score, the value of the greatest possible score, and a pointer to an array of
probabilities for the occurrence of all scores between these two extreme scores.
For example, if score −2 occurs with probability 0.7, score 0 occurs with prob-
ability 0.1, and score 3 occurs with probability 0.2, then the subroutine must
be called with low = −2, high = 3, and pr pointing to the array of values
{0.7, 0.0, 0.1, 0.0, 0.0, 0.2}. The calling program must also provide pointers to λ
and K; the subroutine will then calculate the values of these two parameters.
In this example, λ = 0.330 and K = 0.154.

The parameters λ and K can be used as follows. Suppose we are given a
length N random sequence of independent letters. Associated with each letter
is a score, and the probabilities of the letters determine the probability for each
score. Let S be the aggregate score of the highest scoring contiguous segment
of this sequence. Then if N is sufficiently large (greater than 100), the following
bound on the probability that S is greater than or equal to x applies:

P (S ≥ x) ≤ 1− exp[−KNe−λx].

In other words, the p-value for this segment can be written as

1− exp[−KNe−λS].

This formula can be applied to pairwise sequence comparison by assigning
scores to pairs of letters (e.g. amino acids), and by replacing N in the formula
with N × M , where N and M are the lengths of the two sequences being
compared.

In addition, letting y = KNe−λS , the p-value for finding m distinct segments
all with score ≥ S is given by:

1− [1 + y + y2/2! + ... + ym−1/(m− 1)!]e−y

Notice that for m = 1 this formula reduces to 1− e−y, which is the same as the
previous formula.

A.2 Error conditions

We use the notation of section 3.1.
If any routine invoked by Blast KarlinBlkUngappedCalc fails, then the

values of λ, K and H are set to −1; logK is set to a large positive number; and
the Blast KarlinBlkUngappedCalc routine returns 1 to indicate an error.

Let ` and u be the lowest and highest scores that occur with nonzero prob-
ability. The Blast KarlinLambdaNR routine and the BlastKarlinLtoH routine
both verify

• that the expected value of the scores is negative;

46

• that ` < 0 < u;

• that ` ≥ BLAST SCORE MIN and u ≤ BLAST SCORE MAX; and

• that u− ` ≤ BLAST SCORE RANGE MAX.

If any of the preceding conditions is not met, the routines fail and immediately
return -1.

The BlastKarlinLHtoK routine verifies that the average score and the pa-
rameters λ and H are all nonnegative. It returns −1 otherwise. The routine
does not, however, validate ` and u. The BlastKarlinLHtoK routine tries to
allocate a work array and returns a −1 if the allocation fails.

A.3 Numerical comments

A.3.1 Evaluation of series via Horner’s rule

We use the notation defined section 3.1, particularly the definition of Pj(i) given
by equation (3) and the definitions of ` and u given in equation (4).

The Blast KarlinLambdaNR routine, the BlastKarlinLtoH routine and the
BlastKarlinLHtoK routine all compute sums of the form s =

∑u
i=` cie

iλ for
some set of constants {ci}. The sums are computed using Horner’s rule, i.e.

t0 = c`

ti = c`+i + e−λti−1,

where ŝ = tu−`. Then s = ŝ/e−λu, which can be evaluated as

s = exp(λu + ln ŝ) (32)

if underflow of e−λu is an issue. It is crucial that these sums not be computed
naively, by computing e(`−1)λ and powers of this quantity. In practice, these
sums may be need to be computed for values of λ that cause e(`−1)λ to underflow.

Horner’s rule is the preferred method of evaluating polynomials and has been
proved to be accurate. (See e.g. Higham [9].) There might be some concern,
however, that we have introduced overflow conditions into the computation.
That is not the case. Because e−λ < 1,

|tk| ≤ k max
`≤i≤k

(|ci|). (33)

Thus, for reasonable values of the coefficients, Horner’s rule cannot overflow.
Underflow is still possible in any of the products e−λti−1. However, if the values
of ci are reasonably scaled (i.e. not all close to the smallest positive or largest
negative double precision value), underflow does not affect the accuracy of the
computation. Horner’s rule is simpler to implement than a method the computes
powers of e−λ explicitly, better protected against overflow and underflow and
almost always more efficient. The possible exception is the case in which e−λu

underflows but e(`−1)λ does not, in which case one must use (32) to calculate s
from ŝ.

47

A.3.2 Newton’s method for computing λ∗.

Recall that the Karlin-Altschul parameter λ∗ is the unique, positive root of the
function

φ(λ) = −1 +
u∑

i=`

P1(i)eiλ,

introduced in equation (6). It is possible to compute λ∗ by applying a safe-
guarded Newton iteration to the function φ(λ), but a better approach is to
apply Newton’s method to the polynomial

q(x) = −xu +
u−∑̀
k=0

P1(u− k)xk.

By definition, φ(λ) = euλ × q(e−λ). Thus λ∗ > 0 is a root of φ(λ) if and only if
x∗ = e−λ∗ is a root of q(x). Therefore we may solve for λ∗ by applying Newton’s
method to q(x).

There are several advantages to applying Newton’s method to q(x) rather
than φ(λ). The polynomial q(x) is faster to evaluate. As is discussed below, it
is straightforward to define a safeguarded Newton iteration on q(x) because the
root of q(x) must lie in the interval (0, 1). Furthermore, for x ∈ [0, 1]

|q(x)| ≤ xu +
u−∑̀
k=0

P1(u− k)xk ≤ 1 +
u−∑̀
k=0

P1(u− k) ≤ 2.

Similar arguments can be used to show that the evaluation of q(x) and its
derivative by Horner’s rule does not overflow. Overflow or underflow may occur
in practice in the computation of φ(λ).

In addition to generating a sequence of iterates, a safeguarded Newton iter-
ations generates a sequence of intervals {(ak, bk)}, where (ak+1, bk+1) ⊂ (ak, bk)
for all iteration indices k. These intervals, known as intervals of uncertainty,
each contain a zero of the polynomial q(x). The polynomial has exactly two non-
negative roots, one at x = 1 and the other at x = e−λ∗ . Because 0 < e−λ∗ < 1,
the interval (0, 1) may serve as an initial interval of uncertainty for a safeguarded
Newton iteration.

Because φ′(0) < 0, it follows that q′(1) > 0. Thus it is clear that q(x) < 0 in
the interval (x∗, 1), and q(x) > 0 in the interval [0, x∗). Then for any point x for
which q′(x) ≥ 0, it follows that the Newton iterate x−q(x)/q′(x) is further from
x∗ than x is. Thus whenever q′(x) ≥ 0, it makes sense to bisect the interval of
uncertainty.

In the following, safeguarded algorithm, we implement the usual rule that a
bisection step is taken if the proposed Newton iterate lies outside the current
interval of uncertainty. We also require that, for some γ ∈ (0, 1),

|q(xk)| ≤ γ|q(xk−1)| (34)

for every iterate xk that is derived from xk−1 by a Newton step. A typical value
of γ is .9. If xk does not meet condition (34), then xk+1 is chosen by bisection.

48

Thus it is clear that the iteration must converge to a zero of q(x) in the interval
[0, 1]. We also implement the rule by which take a bisection step whenever
q′(xk) ≥ 0. Because there is an interval about x = 1 for which q′(x) ≥ 0, the
iteration cannot converge to x = 1, and thus converges to x∗. Algorithm A.1.

Safeguarded Newton iteration for q(x)
Let τ > 0 be a solution tolerance.
Let kmax and x0 ∈ (0, 1) be given.
λ← λ0, a← 0 and b← 1.
isNewton← false
for k = 1, . . . , kmax do

wasNewton← isNewton
isNewton← false
Let qk = q(x) and q′k = q′(x).
if qk = 0 then stop
if qk > 0 then a← x; else b← x; end if
if b− a < 2a(1− b)τ then x← (b + a)/2; stop; end if
if (wasNewton and |qk| > γ|qk−1|)or q′k ≥ 0 then

x← (a + b)/2
else

y ← x− qk/q′k
if y ≤ a or y ≥ b then

y ← (b + a)/2
else

isNewton← true
x− ← x; x← y
if |(x− x−)| ≤ x(1− x)τ then stop; end if

end if
end if

end do

The convergence tests of Algorithm A.1 merit some discussion. Suppose we
wish to compute λ∗ with relative accuracy τ . In other words, we wish to find a
computed value λ such that

−τ ≤ λ− λ∗

λ
≤ τ. (35)

But then e−λτ ≤ eλ−λ∗ ≤ eλτ . If x = e−λ and x∗ = eλ∗ , then

xτ − 1 ≤ x∗ − x

x
≤ x−τ − 1. (36)

We may expand xτ − 1 in a Taylor series about x = 1 to find that for x ∈ (0, 1],

xτ − 1 = τ(x− 1) +
1
2
τ(τ − 1)ξτ−1(x− 1)2

for some ξ ∈ [x, 1]. But τ(τ − 1) < 0 for 0 < τ < 1, and thus the second term
in the expansion is negative. It follows that xτ − 1 < −τ(1 − x) for x ∈ (0, 1].

49

One may use a similar argument to show that τ(1 − x) < x−τ − 1. Therefore
the termination criterion

|x− x∗| ≤ x(1− x)τ (37)

is at least as stringent as (36).
If x is close to one, the criterion (37) can be very stringent. However, if x

is close to one, λ = − lnx is close to zero. It is not difficult to see that if x
is close to one, then the quantity (x∗ − x)/x closely approximates λ − λ∗ and
the quantity τ(1− x) closely approximates λτ . Thus condition (37) is no more
difficult to satisfy than (35).

B The calculation of length adjustments

This section discusses the iteration used by BLAST ComputeLengthAdjustment
to compute the length adjustments that are used when calculating E-values. For
a discussion of length adjustments and how these relate to the effective lengths
of the query and database sequences, see section 5.

In this section, we use the notation of section 5, except that we refer to the
actual lengths of the query sequence and the database as m and n, rather than
as ma and na. We do not refer to the effective lengths of the query and database
in this section, so there should be no cause for confusion.

B.1 A fixed-point iteration

Let us define the function

f(`) = ᾱ ln {K(m− `)(n−N`)}+ β, (38)

where β = 0 for an ungapped alignment, and

ᾱ =
{

α/λ for a gapped alignment; and
1/H for an ungapped alignment.

Let us define the interval Ω = [0,min(m,n/N)]. We seek a fixed point `∗ of f(`)
in Ω. In other words, we seek a point `∗ ∈ Ω at which `∗ = f(`∗).

The derivative of f(`) is

f ′(`) = −ᾱ

(
1

m− `
+

N

n−N`

)
. (39)

Thus f(`) is strictly decreasing in Ω. Consider the function h(`) = f(`) − `,
which is defined so that f(`) = ` if and only if h(`) = 0. The function h(`) is also
strictly decreasing in Ω. Due to the the logarithm in the definition of h(`), the
function h(`) is positively infinite in the limit as ` approaches negative infinity,
and

lim
`→min(m,n/N)−

h(`) = −∞.

50

Therefore, there must be a value `∗ < min(m,n/N) for which h(`∗) = 0. Fur-
thermore, h(`) is strictly decreasing, so `∗ is unique. If h(0) = f(0) > 0, then
`∗ ∈ Ω. Conversely, if h(0) = f(0) < 0, there can neither be a zero of h(`) nor
a fixed point of f(`) in Ω.

Because f(`) is strictly decreasing for ` ∈ Ω, one may easily determine
whether a given value of ` is less than or greater than `∗.

Proposition B.1.1. Suppose ` ∈ Ω. Then

• `∗ < f(`) if and only if ` < `∗; and

• `∗ > f(`) if and only if ` > `∗.

Proof. If ` < `∗, then because f(`) is strictly decreasing, f(`∗) < f(`). But
`∗ = f(`∗), and so `∗ < f(`). Similarly, if ` > `∗ then `∗ > f(`). All possibilities
are exhausted, so the result follows.

B.2 A safeguarded fixed-point iteration

The following algorithm is used to define the BLAST ComputeLengthAdjustment
routine, described in section 5.1.

If Kmn ≥ max(m,n), we impose the restriction that the computed value ¯̀
satisfies

K(m− ¯̀)(n−N ¯̀) ≥ max(m,n). (40)

Suppose Kmn ≥ max(m,n) and let `max be the smaller of the two necessarily
nonnegative roots of

K(m− `)(n−N`) = max(m,n).

Then ¯̀∈ Ω satisfies inequality (40) if and only if ¯̀∈ [0, `max]. This property is
a immediate consequence of the fact that the left hand side of inequality (40)
is a convex quadratic function with a negative slope at zero. In the exceptional
case in which Kmn < max(m,n), no ` ∈ Ω satisfies condition (40), and we take
both `max and ¯̀ to be zero.

The algorithm for computing ¯̀ employs an iteration with iteration index i
and variables `i and yi. For i = 1, . . . , maxits, the value `i−1 is restricted to lie
in [0, `max], and yi is chosen by the rule yi = f(`i−1). Typically, one will choose
`i by the rule `i = yi. However, there are circumstances in which `i can not be
chosen by this rule; in particular, `i must lie within [0, `max].

Let the sequence of intervals {[ai, bi]} be ordered by inclusion, and let a0 = 0
and b0 = `max. For any iteration i, if `i ∈ [ai, bi] , then `i ∈ [0, `max]. The rule

`i =
{

yi if ai ≤ yi ≤ bi; and
(ai + bi)/2 otherwise

necessarily chooses a value of `i ∈ [ai, bi]. For i ≥ 1, we choose the interval
[ai, bi] by the following rule.

[ai, bi] =
{

[`i−1, bi−1] whenever `i−1 ≤ yi; and
[ai−1, `i−1] otherwise. (41)

51

Because `i−1 ∈ [ai−1, bi−1] and because rule (41) chooses one of the two end-
points of [ai, bi] to be `i, it follows that [ai, bi] ⊃ [ai+1, bi+1] for every i.

Proposition B.2.1. If `∗ ∈ [0, `max] and [ai, bi] is chosen by rule (41) for i ≥ 1,
then `∗ ∈ [ai, bi] for every i.

Proof. By assumption `∗ ∈ [a0, b0]. Suppose `∗ ∈ [ai, bi]. If `i ≤ yi, then
from Proposition B.1.1 and rule (41) it follows that `∗ ∈ [ai+1, bi+1] = [`i, bi].
Similarly, if `i > yi, then `i > `∗ and `∗ ∈ [ai+1, bi+1] = [ai, `i].

Based on these observations, we define the following algorithm that seeks `∗.

Algorithm B.1. Compute Effective Lengths
Let m, n, N , ᾱ, β, K, maxits and `max be given.
a0 ← 0; `0 ← 0; ¯̀← 0; b0 ← `max

converged← false
for i = 1, . . . , maxits do

yi ← ᾱ ln[K(m− `i−1)(n−N`i−1)] + β
if `i−1 ≤ yi then

ai ← `i−1; ¯̀← `i−1; bi ← bi−1

if yi − ¯̀≤ 1 then converged← true; stop
else

ai ← ai−1; bi ← `i−1

end if
if ai ≤ yi ≤ bi then

`i ← yi

else
if i = 1 then `i ← `max; else `i ← (ai + bi)/2; end if

end if
end do

From the real-valued quantity ¯̀, one must obtain an integer value for the
length adjustment. Proposition B.3.2 states that if Algorithm B.1 converges,
then `∗ ∈ [¯̀, ¯̀+1]. Thus when the iteration converges, either floor(`∗) = floor(¯̀)
or floor(`∗) = floor(¯̀) + 1. One must compute f(floor(¯̀) + 1) and apply Propo-
sition B.1.1 to determine which relationship holds. Whenever possible, one uses
floor(`∗) as the integer-valued length adjustment. On the rare occasions in
which the iteration does not converge or in which one floor(`∗) > `max, one uses
floor(¯̀) as the length adjustment.

B.3 Convergence properties

In this section, we state and prove convergence results for Algorithm B.1.

Proposition B.3.1. If the true fixed point `∗ is nonnegative, then ¯̀ ≤ `∗ at
the final iteration of Algorithm B.1.

52

Proof. The initial value of ¯̀ is zero. Therefore if `∗ is nonnegative, then ¯̀≤ `∗

at the first iteration. The value of ¯̀ is updated only if `i−1 ≤ yi, which, by
Proposition B.1.1, occurs only when `i−1 ≤ `∗.

Proposition B.3.2. If Algorithm B.1 converges, then `∗ ∈ [¯̀, ¯̀+ 1].

Proof. Algorithm B.1 can converge only if `i−1 ≤ yi and yi − `i−1 ≤ 1 for some
index i. By Proposition B.1.1, if `i−1 ≤ yi, then `i−1 ≤ `∗. Furthermore, `∗ ≤ yi

because f(`) is strictly decreasing. Thus

`i−1 ≤ `∗ ≤ yi ≤ `i−1 + 1.

The updating rules of Algorithm B.1 choose ¯̀= `i−1 for the value of i at which
convergence occurs. The result follows immediately.

Proposition B.3.3. If `∗ is negative, then the value of ¯̀ is zero at the final
iteration of Algorithm B.1.

Proof. Algorithm B.1 restricts `i to be nonnegative for every i. Thus, if `∗ is
negative, then `∗ < `i−1 for every i ≥ 1. From Proposition B.1.1, it follows that
yi < `i−1 for every i ≥ 1. But the value of ¯̀ is updated only when yi ≥ `i−1.
Thus the value of ¯̀at the final iteration of Algorithm B.1 equals its initial value,
which is zero.

Proposition B.3.4. If `∗ > `max, then the value of ¯̀ is `max at the final
iteration of Algorithm B.1.

Proof. Because `0 = 0 ≤ `max < `∗, it follows from Proposition B.1.1 that
both `0 < y1 and `max < y1. Thus Algorithm B.1 chooses b1 = b0 = `max.
Furthermore b1 < y1, and so the algorithm chooses `1 = `max. Therefore `1 < `∗,
and so `1 < y2. Inspection of Algorithm B.1 then shows that

• b2 = b1 = `max;

• the value of ¯̀ is updated to equal `1 = `max; and

• the iteration terminates with i = 2.

Thus the value of ¯̀ at the final iteration of Algorithm B.1 is `max.

It is possible, but unlikely, that `∗ ∈ [0, `max] but that the iteration does
not converge. In this case, by Proposition B.3.1, the algorithm produces an
underestimate of the fixed point. By the well-known fixed point theorem (see
e.g. Atkinson [7], Theorem 2.6), if there is a point `∗ for which `∗ = f(`∗)
and for which |f ′(`∗)| = γ < 1, then there is an interval about `∗ for which
the iteration `k+1 = f(`k) converges to `∗. The rate of convergence is at worst
linear. If γ 6= 0, then the iteration converges linearly at an asymptotic rate
of γ. Inspection of equation (39) suggests that |f ′(`∗)| would be considerably
less than one for typical values of `∗, m, n, N , H, α and λ; and thus that
convergence would be quick.

53

References

[1] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic
local alignment search tool. J. Mol. Biol., 215:403–410, 1990.

[2] Stephen F. Altschul. Evaluating the statistical significance of multiple dis-
tinct local alignments. In Suhai, editor, Theoretical and Computational
Methods in Genome Research, pages 1–14. Plenum Press, New York, 1997.

[3] Stephen F. Altschul. Generalized affine gap costs for protein sequence
alignment. Proteins, 32:88–96, 1998.

[4] Stephen F. Altschul, Ralf Bundschuh, Rolf Olsen, and Terence Hwa. The
estimation of statistical parameters for local alignment score distributions.
Nucleic Acids Res., 29:351–361, 2001.

[5] Stephen F. Altschul and W. Gish. Local alignment statistics. Meth. Enzy-
mol., 266:460–480, 1996.

[6] Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schäffer, Jinghui
Zhang, Zheng Zhang, Webb Miller, and David J. Lipman. Gapped BLAST
and PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Res., 25:3389–3402, 1997.

[7] Kendal E. Atkinson. An Introduction to Numerical Analysis. Wiley, 1989.

[8] A. Dembo, S. Karlin, and O. Zeitouni. Limit distribution of maximal non-
aligned two-sequence segmental score. Ann. Prob., 22:2022–2039, 1994.

[9] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms.
SIAM, 1996.

[10] Samuel Karlin and Stephen F. Altschul. Methods for assessing the statis-
tical significance of molecular sequence features by using general scoring
schemes. Proc. Nat. Acad. Sci. USA, 87:2264–2268, 1990.

[11] Samuel Karlin and Stephen F. Altschul. Applications and statistics for
multiple high-scoring segments in molecular sequences. Proc. Nat. Acad.
Sci. USA, 90:5873–5877, 1993.

[12] Arthur B. Robinson and Laurelee R. Robinson. Distribution of glutamine
and asparagine residues and their near neighbors in peptides and proteins.
Proc. Nat. Acad. Sci. USA, 88:8880–8884, 1991.

[13] Zheng Zhang, Alejandro A. Schäffer, Webb Miller, Thomas L. Madden,
David J. Lipman, Eugene V. Koonin, and Stephen F. Altschul. Protein
sequence similarity searches using patterns as seeds. Nucleic Acids Res.,
26:3986–3990, 1998.

54

